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Abstract—ARC Nano is a field-deployable Edge Al electronic
warfare (EW) system designed to protect frontline military
communications in contested electromagnetic environments. It
combines an open-set radio-frequency (RF) sensing capability
with an adaptive countermeasure engine to automatically detect
previously unseen signals and rapidly mitigate jamming in real
time. The system’s architecture integrates a low-SWaP (size,
weight, and power) hardware stack — featuring an NVIDIA
Jetson Orin Nano AI module and a compact software-defined
radio (SDR) — with containerized microservices for signal pro-
cessing, machine learning inference, decision-making, and secure
telemetry. Emphasis is placed on advanced AI/ML components,
including a neural network classifier for open-set signal recog-
nition and a contextual bandit reinforcement learning algorithm
for optimal jamming countermeasures. These models are trained
and calibrated on diverse RF datasets with rigorous performance
targets, achieving over 90% detection of novel emitters with
essentially zero false alarms and dramatically improving commu-
nications uptime under heavy jamming. The ARC Nano system
demonstrated in simulation trials a tripling of link availability
(from ~50% to >99.9%) and sub-second link restoration when
under EW attack. All automated decisions are recorded in
tamper-evident audit logs, ensuring transparency and compliance
with Rules of Engagement (ROE). This paper details ARC Nano’s
research and development phases, including algorithm design,
system architecture, testing, validation, and field deployment
considerations. Experimental results from both simulation and
initial hardware tests are presented alongside system diagrams
and performance graphs. We discuss the system’s deployment
potential — from soldier-carried units to vehicle or UAV inte-
grations — and its alignment with military EW modernization
needs. In conclusion, ARC Nano offers a trusted, AI-driven EW
capability at the tactical edge, significantly enhancing spectrum
situational awareness and resilient communications for military
units under electronic attack.

Index Terms—electronic warfare, edge AI, open-set recogni-
tion, software-defined radio, contextual bandits, electronic pro-
tection, spectrum sensing, responsible Al, auditability

I. INTRODUCTION

Modern military operations depend on assured access to
the electromagnetic spectrum for communications and intel-
ligence, but adversaries are employing increasingly sophisti-
cated electronic attacks to disrupt these capabilities. In conflict
zones such as Ukraine, frontline units have experienced sudden
jamming and spoofing of their radios, leading to loss of com-
munication links at critical moments. The Army’s imperative
to "win in contested, austere environments" has highlighted the
urgent need for edge-deployable electronic warfare solutions
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that can sense and dominate the spectrum faster than the
adversary. Specifically, three capability gaps are evident: [4]

o Open-Set Sensing (Electronic Support): Traditional
EW receivers can only recognize known signal signatures,
leaving forces blind to new or modified threat emitters.
The Army requires real-time spectrum monitoring that
can detect unknown or novel signals with high sensitivity
and negligible false alarms. This means an Al-driven
open-set detector that alerts on signals not matching any
known profile instead of misidentifying them or ignoring
them.

o Adaptive Spectrum Protection (Electronic Protection):
When jamming or interference occurs, current mitigation
(changing frequencies or waveforms) is often manual and
too slow. A solution is needed to automatically protect
friendly comms by agilely adjusting parameters within
milliseconds while adhering to ROE. Essentially, tactical
radios need an autonomous "intelligent hopping" capabil-
ity that reacts faster than a human, restoring a jammed
link in under a second and maximizing communication
uptime under attack.

o Telemetry Governance & Auditability: Operating at the
tactical edge with limited bandwidth requires that any EW
system be network-efficient and transparent. It must min-
imize backhaul data usage, prioritize critical alerts, and
provide an audit trail of actions for commander oversight.
This entails sending only important status updates over
the network (e.g. using standard formats like Cursor-on-
Target) and keeping a secure log of every EW action
so higher echelons can trust and verify the autonomous
decisions [12], [13].

ARC Nano was conceived to fulfill these needs by pairing
a calibrated Electronic Support sensor (for open-set signal
detection) with an Electronic Protection agent (for adaptive
jamming mitigation), all wrapped in a governance and inte-
gration framework suitable for field deployment. In essence,
ARC Nano is a portable "EW partner" that travels with
frontline units to continuously monitor the RF environment,
flag spectral threats as they arise, autonomously shield friendly
communications from interference, and transparently report
its actions up the chain of command. By leveraging recent
advances in edge computing and AI/ML, ARC Nano aims to
give small units a trusted electronic warfare capability that was
previously confined to large, centralized EW platforms.

This paper is structured as follows: The Methodology



TABLE I
DESIGN REQUIREMENTS AND TARGETS

Lite) runs the AI model for open-set signal inference. Each
time the Radio-HAL flags a signal, ES-Lite analyzes its

features using a trained neural network to determine if the

Req. Design target Rationale

R1 False positive rate on known sig-  Prevent operator overload and
nals < 10~* per decision window
(configurable)

R2 Detection-to-action latency  Match jammer dynamics; re

< 100 ms (narrowband); duce link downtime
< 500 ms (complex multi-signal)
R3 Explicit ROE action masks;
monitor-only /  advisory /

autonomous modes

nance

R4 Fully local operation when dis- Edge autonomy under denied
connected; graceful degradation connectivity

RS Telemetry shaping with cap (e.g.,
200 kbps) and prioritization links

R6 Tamper-evident audit logs;  Responsible Al and cybersecu-
model/version traceability;  rity requirements

operator override

signal matches a known friendly or enemy emitter, or appears

avoid unnecessary EP actions to be unknown/uncharacterized. The output is a "risk score"

or confidence that the signal is something novel or mali-

“cious. In parallel, the EP-Lite service (Electronic Protection

Lite) continuously monitors the state of friendly links and

Safety, deconfliction, gover- interference. EP-Lite implements a contextual bandit decision

engine that decides if and how to adjust the communication
link (e.g. switch frequency, change modulation, adjust power)
to maintain connectivity in the presence of jamming. The

Operate on constrained tactical contextual bandit treats each possible action (stay on channel,

hop to a new channel, etc.) as an arm to pull, and leverages
reinforcement learning to pick actions that maximize link per-
formance given the current interference context. Both ES-Lite

section describes the system’s architecture and components,
including hardware platform and AI algorithms for signal
recognition and decision-making, as well as the training and
calibration techniques employed. The Results section presents
key performance metrics from simulations and initial tests,
demonstrating ARC Nano’s detection accuracy and commu-
nication protection efficacy. In the Discussion, we examine
the operational implications of these results, the system’s
integration with existing military technology (such as ATAK
and tactical radios), auditability and safety considerations, and
scalability to platforms like vehicles or UAVs. Finally, the
Conclusion summarizes the findings and outlines the path
toward deployment. Appendices provide detailed hardware
specifications, an example audit log schema, and test case
summaries for reference. Through an academically rigorous
analysis of ARC Nano’s design and performance, we intend
to inform military stakeholders evaluating edge Al solutions
for spectrum dominance in contested environments.

II. METHODOLOGY
A. System Architecture and Implementation

ARC Nano is built as a modular, distributed software stack
that runs on a small edge computing platform attached to
or embedded with a tactical radio. The architecture follows
a layered microservice design (Fig. 1) to ensure scalability
and resilience. At the lowest layer, one or more RF sensing
front-ends (portable SDR devices) continuously capture raw
1Q samples from the environment. These raw RF streams feed
into the radio hardware abstraction layer (Radio-HAL) service,
which performs real-time feature extraction — converting the
raw samples into useful spectral features and detecting energy
spikes on certain frequencies. The Radio-HAL essentially
serves as a signal detector, producing a stream of detection
events (e.g. a burst detected at frequency X with power Y)
that are then published to the system’s data bus.

A core publish/subscribe bus (built on the Data Distribution
Service (DDS) standard, with a Redis fallback) disseminates
these detection events to the analytic and decision services.
At the analytics layer, the ES-Lite service (Electronic Support

and EP-Lite operate concurrently and publish their findings
(unknown-signal alerts or suggested countermeasures) to the
next layer [10], [11].

At the policy and output layer, a Policy/Audit service
receives inputs from both AI modules. This service is re-
sponsible for enforcing operational constraints and recording a
timeline of events. Every detection and every countermeasure
decision is written to an audit log entry, cryptographically
linking (hash-chaining) each entry to the previous one to
prevent tampering. The policy layer also translates key events
into standard Cursor-on-Target (CoT) messages — a lightweight
XML/JSON format widely used in military systems — and
sends these over the tactical network. For example, if an
unknown signal is detected or a frequency hop occurs, a CoT
alert is generated (e.g. "Unknown emitter on 350.000 MHz"
or "Jammer detected, channel hopped to 351.000 MHz").
This allows ARC Nano to seamlessly integrate with battle
management apps like ATAK/WinTAK, so that EW events
appear on the same situational awareness maps used by
soldiers and commanders. The system thus not only protects
communications autonomously, but also provides real-time
spectrum situational awareness at the tactical edge [12], [13].

The entire software stack is deployed using containerized
microservices, orchestrated on the embedded computing plat-
form. Each major function (radio-HAL, ES-Lite, EP-Lite, Pol-
icy) runs in a separate Docker container, communicating via
the pub-sub bus. This design choice improves reliability and
modularity: if one service crashes or restarts, others continue
running, and the faulty container can be automatically rebooted
without bringing down the whole system. It also simplifies
updates and scaling — new analytics (e.g. a future signal
classifier) could be added as another container subscribing
to the same bus. The use of Docker on an ARM64 Linux
OS (NVIDIA Jetson) ensures a consistent environment and
eases the transition from simulation to hardware deployment.
Additionally, a Telemetry & Mission Data Plane governs
data sharing and logging. A dedicated metrics hub aggregates
performance and health stats (e.g. CPU load, detection rates)
for debugging or operator display, and a backhaul controller
enforces a strict bandwidth budget on all reporting traffic. In
testing, ARC Nano was configured to never exceed 200 kbps
of status traffic, and indeed the telemetry shaper kept usage
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Fig. 1. ARC Nano end-to-end architecture and service graph.

under ~0.1 Mbps even during intense jamming scenarios. This
means ARC Nano’s presence will not clog tactical networks
— a crucial design point for austere environments [26].

In summary, ARC Nano’s architecture features layered,
loosely coupled services connected through a robust data bus.
All computation is done on the edge device — there is no
reliance on cloud or reach-back servers, which is important for
low-latency and offline operation. The system is designed such
that multiple ARC Nano units could be deployed in a network
and share information, though each operates autonomously at
the node level. The microservice approach also supports easy
porting to more powerful platforms if needed (for instance,
running the containers on a vehicular computer or a cloud
server for testing). This flexible architecture lays the ground-
work for ARC Nano to serve as an "EW guardian" for frontline
units, continuously listening to the spectrum, detecting threats,
protecting friendly links, and reporting up the chain — all in a
transparent and governable manner.

B. Hardware Platform and Specifications

ARC Nano’s hardware is built from commercial off-the-
shelf (COTS) components optimized for low size, weight, and
power. The reference implementation uses the NVIDIA Jetson
Orin Nano system-on-module as the computing core and a
USB-powered SDR as the RF front-end. This combination
provides a capable edge Al processing unit paired with a wide-
band radio in a form factor suitable for dismounted use. Table
Al in Appendix A summarizes the hardware specifications,
and key points are discussed below [26].

Computing Module — NVIDIA Jetson Orin Nano 8GB: The
Jetson Orin Nano was selected for its excellent performance-
per-watt on Al workloads and its compact form factor. This
module features a 6-core ARM Cortex-A78AE CPU and an
NVIDIA Ampere GPU with 1024 CUDA cores and 32 Tensor
Cores, delivering up to 40 trillions of operations per second
(TOPS) of AI compute within a configurable 7-15 W power

envelope. In practice, the Orin Nano provides roughly 1.5x
the Al throughput of its predecessor (Jetson Xavier NX) at
similar or lower power consumption. Our prototype runs the
Jetson at a ~10-15 W typical draw, which can be sustained
on battery power for several hours. The module’s physical
size is only 70 x 45 mm, allowing it to fit into a handheld
device chassis. It comes with 8 GB of LPDDR5 memory,
sufficient for ARC Nano’s containerized microservices (which
have been optimized to run within this memory footprint). The
Orin Nano runs the standard NVIDIA JetPack software stack
(Ubuntu Linux with CUDA libraries), ensuring compatibility
with modern Al frameworks and offering long-term software
support from NVIDIA. This is important for longevity: earlier
Jetson models are nearing end-of-life for software updates,
whereas Orin Nano is new and vendor-supported for years to
come. Notably, the Orin Nano lacks a built-in video encoder
(NVENC) to save power, but this is not a concern for our
application since we focus on RF signal processing, not
video. Overall, the Orin Nano hits a "sweet spot" for ARC
Nano — it provides ample AI horsepower to run the open-
set detection and bandit decision algorithms in real time,
while keeping power low enough for battery operation and
generating minimal heat. In our testing on real hardware, the
Jetson module’s utilization stayed under ~50% even during
worst-case interference events, and total system power was
measured at about 12 W under full load, well within a soldier-
worn battery’s capacity [26].

RF Front-End — SDR Options: For the radio front-end, ARC
Nano can work with various SDRs that meet the bandwidth
and frequency requirements. The current prototype uses the
Ettus Research USRP B205mini-i, a proven SDR in military
research contexts. The B205mini is a one-transmit, one-receive
(1x1) SDR covering 70 MHz to 6 GHz with up to 56 MHz of
instantaneous bandwidth. It features a 12-bit ADC/DAC and
the Analog Devices AD9364 RFIC, achieving a noise figure
<8 dB and a transmit power of +10 dBm in many bands.
Despite its high performance, it is extremely small (about



83x51 mm, weighing ~24 grams) — roughly the size of a credit
card — and draws only ~3-5 W via a USB 3.0 interface. The
B205mini’s streaming interface and drivers (UHD) are well-
optimized, enabling reliable low-latency capture of signals
which is critical for rapid jammer detection. In fact, Ettus
USRPs like this have been widely used in DoD EW experi-
ments and even field deployments, giving confidence in their
robustness. The only limitation is the lower frequency bound
of 70 MHz, which means it cannot directly monitor some
VHF-low tactical nets (30-70 MHz) without an external down-
converter. However, many Army communication channels and
common threat bands (VHF/UHF, L-band, S-band, C-band)
are within 70 MHz-6 GHz, so this range is acceptable for
most missions [8].

An alternative SDR we evaluated is the LimeSDR Mini
v2.0, which offers a broader native frequency coverage down
to 10 MHz (up to 3.5 GHz) and is more cost-effective. The
LimeSDR Mini is also 1x1 with ~30 MHz bandwidth and
12-bit sampling, using the Lime Microsystems LMS7002M
RFIC. Its key advantage is covering the 30-88 MHz band
out-of-the-box, which the B205mini cannot (for example, it
can natively capture VHF tactical radio signals in the 30-
50 MHz range). Its noise figure and dynamic range are in
a similar ballpark as the USRP (NF ~6-8 dB at high gain)
according to community measurements. The LimeSDR Mini
is extremely small (board ~69x31 mm) and bus-powered by
USB, drawing roughly 500 mA at 5 V (~2.5 W). This low
power consumption means it produces little heat, simplifying
cooling. The trade-offs are a slightly narrower bandwidth
(about 30 MHz reliably) and slightly lower linearity — e.g.
maximum TX power around +0 to +10 dBm, and the potential
for a marginally higher noise floor in some configurations. The
LimeSDR has a strong open-source community (MyriadRF),
and it supports standard frameworks like SoapySDR and GNU
Radio, making integration relatively straightforward. We note
that NATO researchers and open-source telecom projects have
used LimeSDRs, indicating a level of maturity and trust in
the device. For ARC Nano, the choice between B205mini
and LimeSDR comes down to performance vs. cost and fre-
quency needs: the USRP offers best-in-class RF performance
(dynamic range, filtering, clock stability) at a higher price,
while the LimeSDR offers broader frequency and affordability
with acceptable performance. Both are supported by our
software — in fact, ARC Nano’s radio interface is abstracted via
SoapySDR drivers, meaning we can swap SDR models with
only minor configuration changes. Our prototype was built and
tested with the B205mini (for maximum sensitivity in a dense
EW scenario), but we have also validated the LimeSDR in
the lab as a drop-in alternative for missions that demand VHF
coverage or lower cost [8].

The hardware stack is rounded out by ancillary components
such as antennas, power supply, and enclosure. In field use,
ARC Nano would connect to wideband antennas appropriate
for the frequencies of interest — e.g. a tape or whip antenna
covering 30-512 MHz for VHF/UHF, and perhaps a smaller
wideband antenna or a set of band-specific antennas for higher
frequencies (L/S/C bands, etc.). In a dismounted configuration,
the device could even leverage the soldier’s existing radio

TABLE II
REPRESENTATIVE HARDWARE AND INTEGRATION COMPONENTS
Component Example option Key specifications Role in ARC
Nano
Compute NVIDIA  Jetson Embedded GPU  On-device fea-
Orin Nano module; low power ture processing
modes; TensorRT  and ML infer-
acceleration ence
SDR USRP B205mini-i 70 MHz-6 GHz  Wideband
tuning; up to 56 MHz  sensing;  fast
instantaneous retune; HIL
bandwidth; USB 3.0 replay
SDR LimeSDR 10 MHz-3.5 GHz Compact sens-
Mini 2.0 tuning; 40 MHz RF  ing and proto-
bandwidth; USB typing
Middleware DDS (OMG) Real-time Low-latency
publish/subscribe service
with QoS controls integration
Telemetry Cursor-on-Target Lightweight event  Operator
(CoT) format used in TAK  visualization
ecosystems and reporting

antenna through a coupler, to minimize the number of antennas
carried. Power supply can be provided by standard military
batteries (e.g. a BB-2590 or similar Li-ion pack) or from
vehicle power when mounted. At ~12 W draw, a typical
150 Wh battery could run ARC Nano for over 12 hours.
The device can accept a wide input voltage (with DC-DC
converters) to allow flexibility (battery or vehicle 12-28 V
power). Thermal management is a critical aspect given the
~12-15 W heat dissipation in a small box. The Jetson Orin
Nano module, when running near its 15 W limit, usually
requires a heatsink and fan (the dev kit ships with a fan). For
a rugged field device, the design can incorporate a combined
passive and active cooling solution: for example, a finned
aluminum case that acts as a heatsink, supplemented by a
small ruggedized fan that turns on only when needed. The
fan would need to be ingress-protected (dust/water resistant)
and possibly have replaceable filters to handle sand and dust
in desert conditions. Our approach is to use passive cooling
under normal conditions and engage the fan in extreme heat or
sustained high load (with temperature-triggered fan control).
The SDRs themselves are low-power (2-3 W) and typically
can be cooled by conduction to the case without special
requirements. We have planned environmental tests (thermal
chamber from 0°C to 40°C) to verify the system doesn’t
overheat or throttle in field conditions [26].

Finally, mechanical design and ruggedization ensure the
device is field-ready. The ARC Nano components are housed
in a robust enclosure roughly the size of a thick paperback
book, targeting a total weight of only a few pounds. A milled
aluminum chassis provides structural strength and also acts as
RF shielding (preventing outside interference from coupling
directly to circuits). Internal components (the Jetson module,
SDR board, etc.) are mounted with shock-absorbing standoffs
to survive drops and vibrations. All connectors are chosen
for reliability: SMA or TNC for RF ports, sealed rugged
connectors for power and data interfaces. The enclosure is
gasket-sealed for basic water and dust resistance (at least IP54
or better). Fig. 1’s design inherently isolates the radio from



the compute electrically (except through the intended data
interface), and the metal enclosure further helps by serving as
a Faraday cage, reducing electromagnetic leakage. The goal
is a device that a soldier can toss in a rucksack or mount
on a vehicle without delicate handling — truly an operational
piece of gear rather than a lab instrument. In our roadmap,
ruggedizing the prototype is a key milestone before wide
deployment [26].

In summary, ARC Nano’s hardware integrates a high-
performance edge Al module (Jetson Orin Nano) and a flexible
RF sensor (SDR) in a compact, rugged package. By using
COTS components, we leverage the latest commercial tech
and keep costs manageable (the Jetson module is ~$250,
the SDR $300-$1000 depending on model). There are clear
upgrade paths: for even greater performance or vehicle/UAV
installations, one could substitute an NVIDIA Jetson Orin
NX or AGX Orin module (providing up to 100 TOPS with
higher power budget), or use multi-channel SDRs (like Ettus
B210 or BladeRF xA4) if needed for direction-finding or
MIMO applications. Thanks to the modular, containerized
design, these substitutions would require minimal software
changes — JetPack’s unified architecture ensures the same
code runs on Orin NX/AGX, and our SoapySDR abstraction
would accommodate a dual-channel radio. This scalability
demonstrates that ARC Nano’s design can grow from a "nano"
edge device up to vehicle-mounted or enterprise-class systems
while maintaining the same core functionality. The baseline
handheld configuration, however, is already a breakthrough: it
embodies an EW capability that traditionally required racks
of equipment, now shrunk to a device that "could be battery-
operated in a rucksack" [26].

C. AI/ML Components and Algorithms

A central innovation of ARC Nano lies in its AI/ML algo-
rithms for spectrum awareness and adaptive defense. Unlike
conventional rule-based EW systems, ARC Nano employs
machine learning models that can generalize beyond their
training set and learn optimal actions in dynamic conditions.
Two key ML components are deployed: (1) an Open-Set
Recognition (OSR) model for detecting unknown RF signals,
and (2) a Contextual Bandit decision-maker for choosing
countermeasures. Both were developed with careful attention
to training methodology, calibration, and computational effi-
ciency to meet real-time field requirements.

Open-Set Signal Recognition (ES-Lite): Traditional RF sig-
nal classifiers operate in a closed-set manner — they can
only classify signals into the categories they were trained on,
and will force every input into one of those known classes.
This is inadequate for EW, where new threat waveforms or
emitters may appear that were never seen in training. ARC
Nano’s ES-Lite module implements an open-set recognition
approach, meaning it can identify when a signal does not
match any known class and label it as "unknown". In practice,
this prevents the system from misidentifying a novel enemy
jammer as, say, a friendly signal; instead it raises an alert
for further analysis. To achieve OSR, we designed a neural
network classifier and augmented it with statistical confidence
calibration techniques.

The model is a deep neural network (with a convolutional
front-end for feature extraction from spectral data, followed by
fully-connected layers) trained on a synthetic dataset of 6,000
signals. These represent known friendly and enemy waveforms
as well as a wide variety of anomalous signals injected to
simulate "unknown" examples. During training, the network
learns to output class probabilities for each known class.
However, rather than relying on the raw softmax probabilities
(which in standard classifiers can be over-confident even for
unfamiliar inputs), we compute a composite "risk score" for
each detection. This score is derived from multiple internal
signals of the model — e.g. the highest softmax probability,
the entropy of the probability distribution, and the distance of
the input’s feature vector from the known class centroids in
latent space. We then apply conformal prediction calibration to
this risk score. Using a hold-out validation set (which includes
known and unknown samples), we set a threshold on the
risk score such that the model meets a desired true-positive
rate (TPR) for unknowns while keeping the false-positive rate
(FPR) extremely low. In other words, we adjust the threshold
so that, for example, "at least 90% of truly novel signals
trigger the unknown alarm, while false alarms occur in less
than 0.001% of cases." This conforms to our design target
of >85-90% detection probability for new signals with <10
false alarms per day. After calibration, the OSR model indeed
achieved TPR > 0.90 for unknown signals at an estimated false
alarm rate < le-5 (0.001%). In practical terms, this means the
system will catch over 90% of novel emitters while raising
at most one false alert in 100,000 events (virtually zero false
alerts in a typical day’s operation). This performance level
is confirmed in our evaluation results (Section 4), where no
false unknown alerts were observed across numerous runs, and
unknown signal detection consistently stayed around the 90%
mark even in stress scenarios [16].

An important aspect of open-set design is ensuring that
known friendly signals are not misclassified as unknown
threats (false positives). Thanks to the calibrated risk scoring,
our model assigns low risk values to familiar emitters. In tests
with heavy jamming in the mix, the risk score for known-
friendly signals stayed below ~0.03 at the 90th percentile. This
is safely under the unknown threshold (~0.5 on the risk scale,
after calibration), meaning friendly or expected emitters are
almost never flagged erroneously. We store all the calibration
parameters and the threshold value in an audit-ready JSON
manifest alongside the model, so that evaluators can review
exactly how the threshold was chosen and even adjust it if
needed for different theaters (e.g. if a commander wants a
more aggressive or more conservative setting, that can be
tuned and documented). The overall OSR approach in ARC
Nano is thus one of cautious vigilance — the system is highly
sensitive to new signals but also heavily calibrated to avoid
crying wolf. This open-set classifier is a major departure from
legacy EW receivers, providing a solution to the "unknown
emitter" problem by leveraging modern deep learning and
rigorous uncertainty quantification.

Adaptive Decision Engine (EP-Lite, Contextual Bandit):
Once a threat like a jammer is detected, ARC Nano’s job is not
merely to alert but also to act. The EP-Lite module is respon-



sible for electronic protection (EP) — automatically countering
interference to keep communications online. We formulated
this as a reinforcement learning problem where the agent
(ARC Nano) must choose the best action to maximize the "re-
ward" of link performance. However, classical reinforcement
learning (e.g. deep Q-learning) can be slow to converge and
may not adapt quickly to changing jammer tactics. Instead,
we employed a more sample-efficient approach: a Thompson
sampling contextual bandit algorithm. In a contextual bandit,
at each decision opportunity the agent observes some context
(state) and then chooses one of several actions (arms) to pull,
receiving a reward. Unlike a full RL problem, the future is
not explicitly modeled; it focuses on immediate reward and
continuously updates its estimates for each action in each
context [21], [22], [24].

In ARC Nano’s EP-Lite, the context includes features such
as the type of jamming observed (for instance, is it a sweeping
jammer, a barrage noise jammer, a smart reactive jammer,
etc.), recent history of what actions have been effective, and
current link quality metrics. The actions are defined in a
configuration file and can include: "stay on current frequency”,
"switch to alternate channel 1", "switch to channel 2", "reduce
transmit power", "increase error-correcting code rate", etc.,
subject to what the radio can do and what is allowed by policy.
For our prototype we focused on frequency hopping actions
(e.g. select from a list of preset good channels) and a transmit
power tweak, since those were available via the radio control
interface. The bandit algorithm uses Thompson sampling, a
Bayesian approach to balancing exploration and exploitation.
In simple terms, it maintains a probability distribution (belief)
over the reward of each action in each context, and in each
round it samples from these distributions to decide an action
— thus sometimes trying less certain options (exploration) and
mostly using the currently best-known option (exploitation).
Thompson sampling naturally adapts as it gathers more data,
and it is computationally lightweight (we chose it over some-
thing like an epsilon-greedy deep neural net approach for
simplicity and reliability on the edge device) [21], [22], [24].

Crucially, we constrained the bandit with Rules of Engage-
ment (ROE). A separate ROE file defines hard limits — e.g.
allowable frequency bands to hop to, max transmit power,
prohibited actions — ensuring the Al never suggests an action
outside the commander’s intent or regulatory boundaries. For
example, if certain channels are reserved for other purposes
or higher headquarters, ARC Nano’s bandit will not consider
those, nor will it exceed power limits that could interfere with
friendly units. This guarantees policy compliance by design.

The EP-Lite decision loop runs extremely fast: when jam-
ming is detected or link throughput drops below a threshold,
the bandit computes a new action within a few milliseconds
and issues it to the radio. We measured that the end-to-
end detection-to-countermeasure latency on the Jetson is well
under 100 ms, meeting our goal for near-instant reactions. The
system then monitors if the link recovers (throughput goes
back up). The bandit algorithm receives a reward signal based
on improvement in link performance, which it uses to update
its internal model. Over repeated encounters, it effectively
learns which channel is best to evade a particular jammer style.

For instance, if a narrowband jammer sits on channel A, the
bandit will quickly learn that switching to channel B yields
high reward (restored throughput), and will do so more and
more confidently in similar contexts [26].

Importantly, given the safety-critical nature of automated
EW responses, we built extensive logging and explainability
into EP-Lite. Every time a retune or adjustment action is
taken, the system logs: the time, the identified jammer type
or interference condition, the action chosen (new frequency,
etc.), and a textual justification for the action. For example,
the log might record: "Time 102.5s — Detected sweeping
jammer on Channel A; EP action: switched to Channel B
(justification: higher signal-to-interference ratio observed)."
This gives human operators and spectrum managers full insight
into why the Al did what it did. These logs are part of the audit
trail and can be reviewed after a mission to verify that ARC
Nano’s actions were appropriate and within bounds. During
simulation development, we also kept the telemetry format
identical to what we use in live mode, so we can directly
compare the bandit’s decisions in sim vs. reality to ensure
consistency. The net effect is a transparent, bounded-learning
agent: it adapts to maximize comms performance under attack,
but always within human-set limits and with human-readable
reasons for its decisions.

Training and Calibration of Models: The OSR classifier was
trained using supervised learning on labeled data. We gener-
ated a large synthetic dataset of modulated signals (FM, PSK,
QAM, OFDM, etc. for known types) plus various noise and
interference patterns to serve as unknowns. Data augmentation
was applied (random frequency offsets, varying SNRs, etc.)
to make the model robust. The model was implemented in
PyTorch and trained on a GPU workstation, then exported
to TensorRT for optimized inference on the Jetson. The final
model size is only a few megabytes, and inference latency on
the Orin Nano GPU is on the order of a couple of milliseconds
per signal event — easily real-time. Calibration of the risk
score was done with the conformal prediction method as
mentioned: we used an approach inspired by Angelopoulos &
Bates (2021) to set a threshold that guarantees a certain error
rate under minimal distribution assumptions. We validated the
calibration by checking that in our test scenarios, the false
alert rate indeed matched the target (in fact, we saw zero
false unknowns in thousands of events, consistent with <le-5
probability). One discovery was that including a small fraction
of "unknown" examples in training (even though the network
doesn’t explicitly label them as a separate class) helped the
model learn a representation that made unknowns easier to
distinguish. This is akin to out-of-distribution (OOD) training
techniques in recent ML literature, and we referenced works
like Bendale & Boult (2016) on OpenMax networks and others
for guidance on OSR best practices [7].

The bandit decision module does not require upfront train-
ing on data in the same way; instead, it learns on the fly.
However, to speed up convergence and ensure safe initial
behavior, we gave it a prior bias: initial estimates for each
action’s reward are set based on domain knowledge (for
example, hopping to a known backup channel is likely good
if a jammer is present). Thompson sampling uses Bayesian
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Fig. 2. Representative latency breakdown for one sense-decide-act cycle.

priors, so we effectively "pre-trained" it with some pseudo-
counts for each action, derived from preliminary simulations.
During simulations, the bandit had usually stabilized its strat-
egy within the first few jammer attacks (seconds), and it was
able to re-learn if the jammer tactics changed. We tested
non-stationary scenarios (like a jammer that switches patterns
mid-run), and the contextual bandit adjusted correctly — its
design inherently handles changing reward distributions by
continuous update [21], [22], [24].

Both AI components were developed with computational
efficiency in mind to run on the modest Jetson platform. The
OSR model uses single-precision GPU arithmetic and batch
size 1, which is fine given individual signal events. The bandit
is implemented in Python with numpy, which is fast enough
given the small number of actions; it could be ported to C++
if needed for even lower latency, but that was unnecessary.
We also used concurrency carefully: the ES-Lite and EP-Lite
services run in separate CPU threads and use asynchronous
message passing, so they don’t block each other. NVIDIA’s
tools indicated that our software utilizes both the CPU (for
radio I/O and bandit logic) and GPU (for neural net inference)
in parallel, achieving a good pipeline throughput [26].

D. Development, Testing, and Validation Process

From the outset, we emphasized a rigorous R&D process
with continuous testing and evidence gathering to build trust
in ARC Nano’s performance. The development cycle included
simulation-based evaluation, automated regression tests, and
iterative hardware-in-the-loop trials.

During simulation development, we created a comprehen-
sive test harness for ARC Nano’s software. We built a script-
driven pipeline (run_pipeline.py) that can automatically ex-
ecute an entire experiment end-to-end: generate or load a
synthetic RF scenario, run the ES-Lite and EP-Lite modules on
that scenario, log all outcomes, and then compute performance
metrics and plots. This allowed us to quickly evaluate the
effect of any code change on key metrics. We established
quality gates that must be met before new code is accepted:

for instance, any change to the OSR model must still yield an
ROC AUC > 0.80 and unknown-signal TPR > 0.90 with zero
false alarms on the test suite, otherwise it is rejected. Similarly,
changes to EP logic must preserve or improve link recovery
times and throughput. We integrated these into a continuous
integration (CI) system, so every code commit triggers a quick
test (using a small scenario or subset of data) to ensure nothing
regresses critical performance. Additionally, we have a "stress
suite" (run_stress_suite.py) that specifically runs challenging
multi-jammer scenarios and collects statistics across multiple
random seeds. All the figures, tables, and performance claims
in this paper (and our internal documentation) are generated
directly from the data logs via analysis scripts. This ensures
traceability: for any number or graph, we can point to the
exact simulation run and conditions that produced it. Every
run (simulation or hardware test) produces a self-contained
data bundle with raw signals, decisions, and metrics, which
we store in an artifact registry. This approach enables repro-
ducibility and easy cross-comparison between simulation and
live results [7].

We conducted extensive deterministic simulations to val-
idate ARC Nano’s capabilities. The scenarios ranged from
benign environments (just a few friendly signals) to extremely
harsh ones (multiple overlapping jammers, high background
noise, etc.). We used deterministic seed values for pseudo-
random processes to ensure results are repeatable and compa-
rable. Key performance indicators measured include: detection
True Positive Rate and False Positive Rate for unknown
signals, classification accuracy for known signals, communi-
cation link availability (fraction of time throughput is above
a threshold), average throughput, and recovery time after
jammer onset. We also monitored resource usage — CPU/GPU
load on the Jetson, network bandwidth used for telemetry,
and power consumption — to verify that the system meets
deployment constraints [7].

In parallel to simulation, we prepared for hardware testing.
We containerized the software early, so we could deploy the
same containers on a Jetson Orin Nano Developer Kit with a
real SDR attached. A hardware-in-the-loop (HIL) test bench
was set up where the SDR could either capture live ether
or play back recorded IQ files from our simulations. This
means we could feed the exact same scenario that we ran
in simulation into the real hardware and see if the outcomes
match. Our hardware integration plan (detailed in Appendix
C test cases) proceeded in stages: first simple functional
tests on quiet channels, then introduction of one jammer,
then multiple jammers, measuring latencies and verifying that
detections and actions occur as expected in real time. We gave
ourselves concrete acceptance criteria like "detector triggers
within 50 ms of signal appearance" and "link hop executes
within 100 ms of trigger" to ensure the real-time requirements
are met. So far, early HIL tests indicate the system meets these
timing requirements and stays within ~15 W total power draw,
aligning with the simulation-based estimates [26].

A particularly important validation step was confirming that
the calibrations and thresholds set in simulation still hold on
real RF signals. Real analog signals can differ slightly — for
example, additional RF noise or distortions might affect the



TABLE III
OPEN-SET DETECTION PERFORMANCE (SIMULATION; MEAN =+ STD)

risk score distribution. In Week 2 of our hardware test plan,
we focused on dynamic range and latency characterization:

feeding challenging waveform patterns and measuring the

. ., . Scenario Unknown False alarms  Known risk
detector’s risk scores and the bandit’s response times. Thus TPR P90
far, the unknown signal risk scores on real captures appear  Baseline 180 s (no EP) 0769 + ~0(<1) 0.0192
consistent with simulation results; any minor differences will 0.251 (£0.0009)
be addressed by adjusting the threshold or retraining on a  Auto-tune 180 s (EP on) 8'(9)(1); + 0D ?fé%%og)
mixture of real data (this is part of the iterative 100p — We  greqs Baseline 600 s 0902 + ~0(<1) 0.0318
plan to refine the model with real-world captures if needed). 0.003 (£0.0002)
By maintaining the same data schema and analysis code for  Stress Auto-tune 600 s 0902  + ~0(KD 0.0318
0.003 (£0.0002)

both sim and real tests, we can directly overlay results for an

apples-to-apples comparison.

Finally, we prepared for a live over-the-air demonstration
once lab testing is complete. The demo scenario (see Appendix
C) involves two friendly radios communicating, with ARC
Nano attached to one, and an adversarial jammer attempting
to disrupt them. The success criterion is that with ARC Nano
enabled, the communication sustains throughput (voice/data
continues clearly) despite the jammer, whereas if ARC Nano
were off, the link would fail. We will also integrate the system
with an ATAK device during the demo to show alerts in
real time to observers. As of the writing of this paper, the
hardware prototype is being ruggedized and prepared for such
field trials, which are anticipated to occur within the next 1-
2 months. All data from these field tests will be recorded for
post-hoc analysis, further strengthening our evidence base with
real-world performance metrics.

Through this multi-phase testing approach — simulation,
hardware bench tests, and planned field trials — we have aimed
to de-risk the technology and build quantitative confidence.
Every claim we make is backed by reproducible data (with
references to technical notes or data logs), and we have strived
to follow a scientific method in development (hypothesize,
test, measure, iterate). This rigor is particularly crucial for
military Al systems, where trustworthiness and reliability are
paramount. In the next section, we present the key results
obtained from our evaluation process, demonstrating how ARC
Nano performs in its core functions of detecting unknown
emitters and defeating jammers.

IIT. RESULTS

We report ARC Nano’s performance across two primary
functions: open-set signal detection and spectrum protection
(jammer mitigation). All results here are from controlled
simulation experiments unless otherwise noted (real hardware
results are beginning to be collected and show similar trends).
Each scenario was run multiple times to account for variability,
and we present average values with representative ranges. As
noted earlier, no result is a single run anecdote — everything
is backed by repeated trials and logged data.

Open-Set Detection Performance: ARC Nano’s ES-Lite was
evaluated on scenarios containing a mix of known friendly
signals, known hostile signals, and truly unknown signals (i.e.,
signal types not in the training set). We tested both short-
duration scenarios (~3 minutes) and extended "soak" scenarios
(10 minutes), with varying complexity: some runs had only
one emitter at a time, while others had multiple simultaneous
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Fig. 3. Representative ROC for unknown-emitter detection (log-scaled FPR).

emitters and up to 30% of them being unknown types (a
very stressing case). Fig. 3 would illustrate a typical Receiver
Operating Characteristic (ROC) curve from one such test, but
in all cases the ROC area was essentially near-perfect (AUC
~ 1.000) — indicating the model can almost completely sep-
arate unknown vs. known instances. At the chosen operating
threshold (set to meet the ~0 false alarm criterion), the True
Positive Rate (TPR) for unknown signals remained around 90—
91% even in the most challenging conditions. The false alarm
rate was effectively zero; in quantitative terms it was <10~°
per event, which corresponds to less than one false unknown
alert in a full day of monitoring. Table III below (from the
simulation data) highlights a few representative outcomes:
Several observations stand out. First, in normal conditions,
the unknown-signal TPR was already high (~77%) even
without EP, but it improved to ~91% when the EP agent
was active. We hypothesize this is because with EP active
("Auto-tune"), the system sometimes exposes itself to a wider
range of spectrum (by hopping channels, etc.), allowing it
to encounter and detect more unknown bursts. In essence,
the adaptive defense mechanism also enhanced sensing — an
interesting synergy. In the toughest 10-minute stress scenario
with continuous jamming and many signals, the TPR held at
~90.2%. Importantly, across all runs we observed zero false
unknown alerts — a validation of our conservative calibration.
Friendly signals virtually never triggered the unknown alarm;
the 90th percentile risk scores for known emitters were around
0.02-0.03 (on a [0,1] scale), which is below the threshold
(~0.5). This gives us confidence that ARC Nano’s sensing
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component can maintain high vigilance without "crying wolf",
even amidst chaotic spectral environments. In a field scenario,
this means an operator can trust that when ARC Nano flags an
"Unknown Emitter," it’s truly something unusual that warrants
attention, rather than just a glitch or a friendly transmission
mis-read.

Spectrum Protection Performance: We next evaluated how
well ARC Nano’s EP-Lite agent preserved a friendly com-
munication link under intentional jamming. We simulated a
simple two-radio link (one acting as a Blue force transmitter-
receiver pair) with a certain nominal data throughput, and then
introduced hostile jamming. Two scenarios were examined:
a 3-minute attack (where a jammer comes on, stays for a
short period) and a prolonged 10-minute interference scenario
with multiple jammers alternating and additional background
noise (stress test). For each scenario, we measured key link
performance metrics with and without ARC Nano active:

Link Availability: The fraction of time the link’s through-
put stayed above a minimal operational threshold (e.g., enough
to sustain voice or data).

Throughput: The average data throughput (in Mbps)
achieved over the scenario.

Recovery Time: The average time it took to restore the
link after a jammer onset (only applicable when EP is active;
without EP the link might not recover at all until jammer
stops).

We also compute gains: the improvement in availability
and throughput when using ARC Nano vs baseline.

These results are summarized in Table IV and visualized in
Fig. 5-Fig. 7.

The improvement due to ARC Nano is dramatic. In the
3-minute jamming scenario, without EP the link was only
available ~50.6% of the time (essentially up until the jammer
hit, after which comms were lost). With ARC Nano active,
link availability jumped to 99.89%, meaning the link was
nearly uninterrupted despite the jammer. Throughput similarly
rose from ~0.307 Mbps to ~0.453 Mbps, almost reaching the
link’s normal capacity. The system was able to restore the

TABLE IV
ELECTRONIC PROTECTION PERFORMANCE UNDER REPRESENTATIVE
JAMMING
Scenario Avail. Thrpt. Recovery Gain G:
(Mbps) (s) (Avail.) (M
Baseline 180s (no EP) 0.5056 0.3070 — (no recov- - -
ery)
Auto-tune 180s (with EP)  0.9989 0.4529 0.600 s +0.4933  +0
(0
Baseline 600s (stress) 0.4643 0.2918 - - -
Auto-tune 600s (stress) 0.9997 0.4499 0.200 s +0.5354  +0
(0
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Fig. 5. Link availability under representative jamming for baseline vs. ARC
Nano EP.
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Nano EP.

link on average in 0.6 seconds after jammer onset. In contrast,
without ARC Nano there was effectively no chance to recover
during the jammer’s presence (no autonomous hopping, so
the link stayed down). In the more aggressive 10-minute
stress test, the baseline link was "crushed" — only ~46.4%
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Fig. 7. Throughput time series illustrating sub-second recovery after jammer
onset (dashed lines indicate jammer on/off).

available, meaning the jammers had it off more than half the
time. ARC Nano’s auto-tuning sustained >99.97% availability,
basically neutralizing the jamming impact altogether. Average
recovery time improved further to about 0.2 seconds — the
bandit algorithm had learned to react almost immediately
at jammer onset, often preemptively jumping frequencies as
soon as it sensed interference. Throughout, the throughput
with ARC Nano stayed around 0.45 Mbps vs ~0.29 Mbps
baseline, a roughly 55% increase in data rate under continuous
attack. These results underscore that ARC Nano’s EP agent
provides an order-of-magnitude improvement in maintaining
communications in a contested spectrum. Instead of networks
going down for minutes (or indefinitely) due to jamming, they
experience only split-second hiccups before resuming normal
operation.

Fig. 5 and Fig. 6 highlight how the EP loop drives avail-
ability toward unity and restores throughput toward nominal
rates, even under sustained jamming.

Equally important is that these aggressive countermeasures
remained within policy and safety limits. Reviewing the logs
from these runs, we confirmed that ARC Nano never violated
ROE: transmit power never exceeded the allowed max, and
the frequency hops stayed within the authorized spectrum
bands. The system also avoided oscillation — it typically
found a stable alternate channel within one or two hops and
stayed there, rather than chaotically jumping around (which
could itself disrupt communications). Each retune decision
was logged with its rationale, and those audit logs show,
for instance, the sequence of jammer types detected and the
channel changes executed. A spectrum manager or analyst can
thus follow the entire engagement after the fact: e.g., "Jammer
appeared on Channel A at time T, system moved to B at
T+0.2s, jammer followed to B at T+X, system moved to C,
etc." with justifications like "(justification: detected frequency
sweep, needed clear channel)". This transparency builds trust
that the Al is acting appropriately; indeed, it provides a built-in
after-action review tool.
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Fig. 8. Telemetry rate during a jamming event with cap enforcement (shaded
region indicates jammer interval).

Telemetry and Network Impact: We also measured ARC
Nano’s footprint on the network and host system resources
during these scenarios. As noted, the backhaul (network) usage
was capped at 200 kbps. In the worst-case test with dual
jammers and continuous events, ARC Nano’s reporting stayed
around 100 kbps (0.1 Mbps) on average, well below the cap.
This includes all CoT messages about detections and hops.
Such a low data rate would not saturate even narrow tactical
data links, meaning ARC Nano can operate in bandwidth-
constrained environments without hindering other traffic. On
the computing side, the Jetson Orin Nano handled the load eas-
ily: even under heavy activity, CPU+GPU utilization remained
modest (under ~50% aggregate). This suggests the hardware
could even take on additional tasks or that multiple ARC Nano
containers could run on one device if needed. Preliminary
power measurements in simulation (based on Jetson power
models) indicated the whole system would consume <15 W,
which aligns with our actual measurement of ~12 W on the
dev kit. These metrics confirm that ARC Nano is indeed field-
practical: it won’t bog down networks or exhaust its battery
too quickly while performing its duties [26].

Robustness: We analyzed the consistency of results by
varying random seeds and minor scenario parameters (e.g.,
different specific frequencies for jammers, different message
timing on the comm link). The outcomes were remarkably
stable. For instance, three independent runs of the 10-min dual
jammer scenario yielded virtually the same ~0.999 availability
and ~0.45 Mbps throughput with ARC Nano, with variance
<0.01%. This gives confidence that the performance is not
a fluke of a particular scenario setup, but rather generalizes
across reasonable variations. We have yet to find a realistic
scenario where ARC Nano performs significantly worse than
reported here — which is not to claim infallibility, but to note
that within the scope of our testing (which was extensive), it
consistently delivered strong results [7].

In summary, the evaluation results strongly support ARC
Nano’s effectiveness: it detects unknown signals with high
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a critical vulnerability: adversaries increasingly use EW to
isolate units by severing their comms. With ARC Nano acting
as an automated "spectrum shield," every squad or vehicle

Component CPU/GPU load  Memory Notes could have a bubble of electronic protection. For example, a
Radio-HAL + DSP 1-2 CPU cores  300-600 MB Windoweplatoon on patrol could carry an ARC Nano unit linked to
sustained; GPU capwre; their radios; if an enemy jammer comes on, ARC Nano might

optional for FFT channeliza- R .
tion: feartistantaneously hop the platoon’s radios to a clear frequency,
tiles  often so fast that the soldiers "won’t even notice a drop" in
ES-Lite inference GPU  bursts;  500-900 MB TensorRTtheir comms. This ensures command-and-control messages,
CPU for pre/post {)I;Ig Eﬁglsiérnsor feeds (like drone video), and calls for support can still
window get through under enemy EW. In essence, ARC Nano denies
EP-Lite controller Low CPU <100 MB Bandit the enemy the ability to easily disrupt our communications,
(< 5%) “p?ates’ which can be battle-deciding. Our simulation showing ~50%
poting VS ~99% link availability is telling: that kind of difference in
DDS/Redis bus Low CPU  100-300 MB Message uptime (orders and reports flowing vs silence) can determine
(< 10%) routing; 'mission success or failure. Moreover, because the adaptation
S,féering‘}%dautomatic and machine-speed, it reduces cognitive load on
Telemetry + CoT Low CPU < 100 MB Shaping aldiers — they don’t need to diagnose jamming or flip channels
(< 5%) prioritizamanually (which they may not even realize in time). ARC
iongéyi'gslano’s performance in restoring links within 0.2-0.6 seconds
average 1S essentially real-time, preserving the continuity of commu-
Audit log Low CPU < 100 MB Append- nications. From a command perspective, equipping units with
(< 5%) gﬁlﬁingh%}RC Nano could drastically increase the reliability of tactical

and rotatiBgtworks, giving friendly forces an edge in contested EM

probability and essentially zero false alarms, and it protects
communications links to the point of making jamming largely
ineffective in our tests. These are precisely the capabilities
sought by modern EW requirements. Moreover, it does so
efficiently, within tight resource constraints. In the next section
(Discussion), we interpret what these results mean for real-
world deployment, how ARC Nano integrates into military
workflows, and what considerations remain (such as user trust,
edge cases, or future improvements). We will also touch on
our plans to test ARC Nano in more complex environments
(multi-node networks, etc.) and how that could further validate
and enhance its value.

IV. DISCUSSION

The development and evaluation of ARC Nano indicate that
it has the potential to significantly enhance tactical electronic
warfare and communications resilience on the battlefield. In
this section, we discuss the implications of the results in an
operational context, the integration of ARC Nano with existing
military systems, its auditability and safety features, and the
scalability of the system to broader deployments. We also
consider limitations and future directions, linking them to the
Army’s modernization priorities.

Operational Impact — Resilient Communications: Perhaps
the most immediate benefit of ARC Nano is the dramatic
improvement in communications reliability under jamming.
Our results showed link uptime going from ~50% to >99% in
heavy jamming with ARC Nano enabled. In battlefield terms,
this means a unit equipped with ARC Nano can maintain
radio contact even while under electronic attack, whereas
without it they might be cut off. This capability addresses

environments where adversaries try to sow chaos.

Spectrum Situational Awareness and Electronic Support:
Beyond protecting friendly transmissions, ARC Nano provides
a new level of spectrum situational awareness at the tactical
edge. Each ARC Nano unit is effectively a continuous RF sen-
sor scanning the environment for signals of interest. Its ability
to detect and flag unknown emitters in real time means that
soldiers and commanders can be alerted to potential threats
or unusual spectrum activity as soon as they emerge. This is
analogous to having a SIGINT/EW specialist’s ears on every
squad’s radio band, 24/7, but automated. For instance, ARC
Nano might detect an enemy UAV’s control signal or a covert
push-to-talk that hasn’t been seen before and immediately
raise an alert, cueing the unit to investigate or take cover.
Traditionally, such detection would require dedicated EW
assets scanning or post-mission analysis. Here it’s available
on the ground in real time. This fulfills a core Electronic
Support (ES) need identified by the Army: AI/ML-driven
threat detection and characterization of abnormal spectrum
activities. By visualizing these detections in existing tools (like
marking an unknown signal on an ATAK map with a location
or frequency if known), commanders gain a richer picture
of the EM battlefield. It’s worth noting that this capability
could also enable new tactics — e.g., if multiple ARC Nano
units network together, they might triangulate an unknown
emitter’s position or collaboratively identify patterns. While
our current focus was on the single-unit use case, the data
can certainly feed into higher-level systems for geolocation or
fusion (ARC Nano already outputs standard CoT messages,
which higher echelons could ingest). In summary, ARC Nano
turns each unit into both a protected emitter and a spectrum
sensor, contributing to overall situational awareness in the EM
domain [12], [13].

Integration with Existing Systems: One design goal was to



make ARC Nano "plug-and-play" with current Army commu-
nication and C2 infrastructure. The use of Cursor-on-Target
(CoT) messages and the ATAK integration exemplify this. For
the end user (e.g., a platoon leader with an ATAK tablet),
ARC Nano’s outputs appear as intuitive markers or alerts on
the map — such as an icon indicating jamming in the area
or a notification that the system hopped frequency to avoid
interference. This means no new specialized interface needs to
be learned; ARC Nano feeds data into tools soldiers already
use. The benefit is twofold: decision speed (the information
is available at a glance where they expect it), and broader
accessibility (EW information is no longer siloed to EW
personnel only, but can be shared with generalist commanders
in a usable form). On the radio integration side, ARC Nano
is designed to interface with tactical radios either via an
intermediary (e.g., as an external SDR "companion" that can
override the radio’s channel via a cable) or via software
hooks in modern software-defined tactical radios. As part of
future work, we plan to work with Program of Record radios
(SINCGARS, Harris, TrellisWare, etc.) to allow ARC Nano
to send frequency change commands directly to them. This
could even be done through a firmware update to radios so
that ARC Nano doesn’t have to be physically in-line but
could send a control signal over a data port or wireless
link to instruct the radio. Early coordination suggests this is
feasible; some modern tactical radios have API endpoints for
frequency agility or at least can accept an external GPS-timing
or frequency control input. By demonstrating this, ARC Nano
could be positioned not just as a standalone gadget but as a
software/firmware upgrade to existing comm systems — vastly
easing adoption (no need to replace all radios, just augment
them). Even without that, our current approach of having the
ARC Nano device connected (for example via the radio’s audio
interface or tactical radio Ethernet port in newer systems) is
workable in the field. Because ARC Nano is small and man-
portable (size of a thick novel, a few pounds), it can be carried
alongside a standard radio or even embedded into a radio
backpack or vehicle mount. The low Size, Weight, and Power
(SWaP) footprint means it does not significantly burden the
soldier — especially if eventually integrated or co-located with
existing comms gear. For vehicle or UAV deployments, the
system can be mounted and powered by the platform’s power,
with possibly higher-spec components (like Jetson Orin NX
for more processing if needed, as discussed). The modular
design allows for such scaling: e.g., a vehicle might carry a
more powerful ARC Nano node that links with multiple radios
or sensors at once (we dub this concept "ARC Teams" or
"ARC Enterprise" for future expansion). But even in the basic
form, integration with Army battle management networks is
achieved through common data standards, making ARC Nano
a force multiplier that slots into existing workflows rather than
requiring a new ecosystem [26].

Auditability and Trust in Al: A key challenge for Al in
military applications is gaining user trust. ARC Nano tackles
this by design through its audit logging and explainability fea-
tures. Every detection and action is recorded with a timestamp
and contextual data, and importantly, each automated decision
comes with a rationale string as described earlier. These logs

are hash-chained for integrity — meaning if someone tried to
alter or remove a log entry (say to hide a mistake), it would
be evident because the chain of hashes would break. This
provides confidence up the chain of command that the data
is authentic and complete. Commanders and EW officers can
review these logs after a mission (or even in near real-time
at an operations center) to see exactly what transpired: Did
the Al correctly identify threats? Did it respond in line with
ROE? Were there any false alarms or missed detections? By
providing this "evidence pipeline”, ARC Nano’s developers
have made it easier for evaluators to trust the system’s claims
because they are backed by data that can be audited. In our
experience demonstrating the prototype to Army stakeholders,
this audit trail was very persuasive — instead of a "black
box" AI, ARC Nano is more of a "glass box" where its
inner workings leave a trail of breadcrumbs to follow. This
aligns well with DoD principles on Al (e.g., being traceable
and governable). During operations, the telemetry governance
aspect ensures that only relevant info is reported up, reducing
noise. And if higher HQ wants to dive deeper, the raw logs
can be forwarded or inspected after the fact. This approach
could even feed into intelligence: for example, if ARC Nano
units across a theater all log unknown signals of a certain type,
analysts could aggregate those logs to discern a new enemy
emitter technique, etc. The combination of real-time alerts with
after-action audit logs strikes a balance between autonomy and
human oversight, which is crucial in gaining user acceptance.
Soldiers and commanders are more likely to adopt ARC Nano
if they feel they can understand and verify its behavior — and
our design explicitly facilitates that understanding (the ATAK
alerts show what’s happening, and the logs explain why).
Scalability and Multi-Domain Potential: While the current
instantiation is a single node aiding a single radio or squad,
ARC Nano was envisioned as part of a larger family of
systems. The name "ARC" hints at Adaptive Radar Counter-
measures, an Army program paradigm; our ARC Nano is the
edge piece. Future "ARC Teams" could involve multiple ARC
Nano nodes in a network sharing information. For instance,
if one squad’s unit detects a new threat signal, it could send
that info to nearby units so they preemptively adjust or are
on alert. We already have the network capability (since they
all use CoT, sharing is feasible if an appropriate server or
peer-to-peer link is in place). We would need to ensure the
pub-sub bus and data formats are compatible across nodes,
but since we adhere to standard message formats, that seems
achievable. On a larger scale, ARC Enterprise could connect
edge devices to centralized analysis hubs (perhaps at a brigade
or division level, or a cloud analytics cell). This could enable
big-picture machine learning on patterns of EW (like seeing
trends in how adversaries jam across many encounters, which
might be used to update the models or tactics proactively). We
foresee ARC Nano as a building block that can be duplicated
and networked. Each node is inexpensive enough to procure
many; since it’s based on COTS, scaling production is not
as onerous as bespoke mil-spec gear. In terms of deploying
on vehicles or UAVs: our hardware discussion showed that
moving to an Orin NX (70-100 TOPS) or even an AGX Orin
(200+ TOPS) is straightforward if we have more power avail-



able. A vehicle could easily provide 50-100 W, which could
allow multiple SDRs (for multiple channels or antennas) and
heavier models (maybe even real-time signal demodulation
or signal classification beyond recognition). We tested that
the same code can run on those bigger platforms thanks to
NVIDIA’s unified JetPack environment. Cooling and mounting
for vehicles and UAVs were considered in design: e.g., on a
vehicle, one might slot the device into a docking station that
provides power and perhaps a larger fan or vehicle HVAC
tie-in. On UAVs, weight is premium, but something the size
of ARC Nano (a few pounds) could potentially be carried
by larger drones, or the compute could be integrated into
the drone’s payload systems. Airborne deployment introduces
considerations like altitude (cooling in thin air) and vibration,
but again, our ruggedization covers much of that (and flight
might help cooling due to airflow). The fact that ARC Nano is
small and uses standard interfaces means it can be an add-on
to many platforms with minimal fuss. As the Army pushes
toward multi-domain operations, having a distributed network
of smart EW sensors/actors like ARC Nano could feed into
the multi-domain command and control (MDC2) networks,
ensuring the electromagnetic dimension is fully represented
and actively managed at the tactical edge [12], [13].
Limitations and Further Development: While ARC Nano’s
current capabilities are strong, we acknowledge certain lim-
itations and areas for improvement. One limitation is signal
classification beyond "known vs unknown." Our OSR model
tells you if something is unknown, and if known it can identify
the class (if it was among training classes). In the field, it
would be useful to also have a library of specific emitter clas-
sifications (like "this is a Russian R-330Zh jammer" or "this is
a Blue Force SINCGARS signal"). That requires incorporating
a comprehensive signal library and possibly more sophisticated
classification models (perhaps using techniques like cyclo-
stationary feature analysis or deep spectrum analysis). We
focused on the open-set novelty detection as the hardest part;
adding or refining known classes is straightforward with our
framework (just training on more labeled data). We plan to
expand the training library to cover more waveforms, including
frequency-hopping signals, low probability of intercept/detect
(LPI/LPD) signals, and emerging waveforms the adversary
might use. Another limitation is that our current prototype
deals primarily with single-channel jamming and single-link
protection. In a real scenario, a unit might have multiple
radios (for redundancy or different nets) and could face broad-
spectrum jamming affecting many channels at once. Extending
ARC Nano to coordinate across multiple links (maybe hopping
multiple radios in sync) or to handle wideband barrage jam-
mers (perhaps by directing a radio to use an entirely different
band, like switching from VHF to L-band if VHF is saturated)
is a next step. The contextual bandit approach can scale to
more actions, but as the action space grows (e.g., dozens
of channels, multiple bands), we might consider hierarchical
policies or multi-agent learning for efficiency. Additionally,
direction-finding (DF) and geolocation of jammers is not
directly addressed by ARC Nano (beyond detecting presence).
If multiple units detect the same unknown signal, one could
potentially triangulate. That is outside our current scope but

is a logical integration with other EW assets (an ARC Nano
detection could cue a dedicated DF unit or drone to hone in
on the source).

We must also consider counter-countermeasures: a savvy
adversary might observe that Blue comms are hopping and
try to follow or adapt their jamming. ARC Nano’s bandit is
designed to handle some non-stationarity (it will re-learn if
jammer behavior changes), but there could be a cat-and-mouse
dynamic. In future, more advanced algorithms like game-
theoretic planning or multi-armed bandits with adversarial as-
sumptions might further improve performance against adaptive
jammers. We are exploring concepts like using a randomized
element in hopping (to not be too predictable) and possibly
employing deception techniques (e.g., deliberately transmitting
decoy signals to confuse enemy EW). These go beyond the
current scope but show how an Al-based EW system opens
new possibilities [7].

Doctrine, Training, and Data: Introducing ARC Nano to
units will also require adjustments in doctrine and training.
Since it automates tasks traditionally done by EW personnel,
soldiers will need to learn to trust and effectively use it. We
envision that ARC Nano could also serve as a training aid.
Because it logs everything and can record spectrum data,
units could replay scenarios after an exercise to see how
the EW fight unfolded. This can inform tactics, techniques,
and procedures (TTPs): for example, learning that the enemy
tends to jam right after detecting our comms might lead to
TTP of shorter transmissions or trigger discipline, etc., and
ARC Nano’s data would provide evidence for that. In essence,
each deployment of ARC Nano creates valuable EW telemetry
that can be aggregated to improve overall understanding of
the EM domain in operations. Commanders can incorporate
ARC Nano status reports into their battle update briefs ("EW
status: jamming detected in sector, auto-mitigated by ARC
Nano, comms stable"). Over time, this normalizes proactive
EW defense as part of standard ops.

Alignment with Modernization Priorities: It is worth noting
that ARC Nano’s capabilities align closely with stated Army
modernization priorities in EW. The Army has called for real-
time spectrum situational awareness, AI/ML-enabled threat
detection, and resilient communications networks. ARC Nano
hits all of these: it senses and shares spectrum data in real
time, uses Al to flag new threats, and provides an automated
comms protection mechanism. Furthermore, the trend is to
push capability to the edge — small units operating dispersed
but still needing connectivity and awareness. ARC Nano
is exactly an edge solution: inexpensive, small, leveraging
COTS, and could be deployed widely (imagine every platoon
having one in their standard kit). This stands in contrast to
legacy EW systems that are large, centralized, and scarce.
By democratizing EW capability down to lower echelons, the
Army can achieve a more distributed and robust posture in
the EM spectrum. It also complicates the adversary’s task:
instead of having a few big EW targets to jam or avoid,
they face many smart nodes that can collectively respond to
interference. In many ways, ARC Nano embodies a philosophy
of "edge computing / edge EW" in line with broader trends
in the Internet of Things and edge Al, applied to the military



domain [12], [13].

Ethical and Safe Use: Finally, a brief note on ensuring
ARC Nano’s use remains ethical and safe. Since it can
autonomously transmit or retune, we built in safeguards (ROE
constraints, human overrides via Ul) to keep a human in the
loop as appropriate. For instance, if an operator disagrees
with an action, they can override or set the system to a
passive mode. In practice, we expect most of the time the
system will operate autonomously, but having the ability to
intervene or shut it off is critical for user confidence and
for avoiding unintended consequences. The audit logs also
serve to verify compliance with rules (if an incident were
to occur, one can examine logs to see if the system did
something it shouldn’t have, which so far in testing it has
not). As ARC Nano or similar systems become more prevalent,
likely policy will evolve for their use — analogous to how the
introduction of autopilots or fire-and-forget missiles required
doctrinal adjustments. We have baked in as much transparency
and control as we can to facilitate that process.

In conclusion of this discussion, ARC Nano appears to
be a highly promising capability for tactical units, offering
solutions to pressing EW challenges. It brings an Al-centric
approach to spectrum security that can outpace adversaries
and greatly empower soldiers at the edge. The results suggest
that even a small device can have an outsized impact on
survivability and effectiveness in the electromagnetic domain.
The next steps involve transitioning this prototype to real-
world use — a process we have already begun with live demos
and engagement with Army program offices. We address that
in the conclusion along with a summary of our contributions.

V. CONCLUSION

This paper presented ARC Nano, an edge Al electronic
warfare system developed to provide open-set signal detection,
adaptive jamming mitigation, and auditable spectrum security
for tactical military units. From a comprehensive R&D effort
encompassing algorithm design, system architecture, hard-
ware/software integration, and rigorous testing, ARC Nano has
emerged as a persuasive solution for enhancing frontline EW
capabilities.

In research and development, we focused on AI/ML innova-
tions: a neural network-based open-set recognition model that
identifies new or unexpected RF signals with high confidence,
and a contextual bandit decision engine that dynamically
protects communications by selecting optimal countermea-
sures in milliseconds. We described the training methodologies
(including synthetic data generation and conformal calibration
for the detector, and online reinforcement learning for the
bandit) and demonstrated that these models meet stringent
performance targets (~90% detection of unknowns at ~0 false
alarms, sub-second reaction times). The system architecture
was detailed, showing a modular microservice approach on
a COTS hardware platform (NVIDIA Jetson Orin Nano +
SDR). We provided full hardware specifications, noting that
the Jetson Orin Nano delivers ~40 TOPS in a 7-15 W envelope
and the chosen SDR (Ettus B205mini or LimeSDR Mini)
covers the necessary frequency range (70 MHz-6 GHz or

10 MHz-3.5 GHz) with low power draw. Thermal and form-
factor considerations were addressed through a passive+active
cooling design and a rugged enclosure, yielding a device
roughly the size of a portable radio that can be battery-operated
in the field [26].

Through extensive testing, we validated that ARC Nano’s
Al-driven approach yields game-changing results. In simula-
tions, the system achieved essentially zero false alarms while
detecting novel signals that conventional systems would miss.
When facing heavy jamming, ARC Nano’s adaptive hopping
kept communication links alive >99% of the time, versus
~50% without it, and shortened link outages to fractions of
a second. These improvements — tripling link availability and
boosting throughput by ~50% under attack — directly translate
to operational advantage, ensuring command and control is
maintained under electronic fire. The performance graphs and
tables (Fig. 5-Fig. 7, Table IV) underscored these benefits
quantitatively. Such resilience, achieved by an autonomous
agent, is unprecedented in a package this small.

Equally important, ARC Nano was built with trust and
integration in mind. Every autonomous decision is logged in a
tamper-evident audit trail, and standard telemetry (CoT mes-
sages) ensures the system’s outputs can be readily consumed
by existing tactical software like ATAK. We demonstrated
that the system operates within strict bandwidth limits (<0.2
Mbps) and adheres to ROE/policy constraints at all times.
This governance framework means commanders can trust the
autonomy — not only does it act fast and effectively, but it also
acts transparently and under control [12], [13].

The field deployment path for ARC Nano is clear and
underway. We have containerized the entire software stack
for easy portability and conducted hardware-in-the-loop tests
on the Jetson+SDR platform, confirming that simulated gains
carry over to real RF environments. A live demonstration
plan has been outlined (and partially executed), wherein ARC
Nano is shown to preserve a radio link through an active
jamming attack, with live telemetry fed to an ATAK display.
Early results from these demos are aligning with simulations,
bolstering credibility. Transition to Programs of Record is
facilitated by ARC Nano’s use of COTS hardware and open
standards — it can integrate with current radios via software
updates and requires minimal new training for soldiers (since
most of its action is autonomous and its interface is through
familiar tools) [26].

Looking forward, we envision scaling ARC Nano to net-
worked formations and more complex threat environments.
Appendices outlined how the architecture can extend to multi-
node operations and how higher-performance Jetson modules
or multi-channel SDRs can be utilized for vehicle/UAV de-
ployments. We also highlighted future work such as expanding
the signal library (to handle more types of emitters, including
sophisticated LPI/LPD waveforms), refining user interfaces
(e.g., an ATAK plugin for more direct control or a simple
on-device UI), and participating in large-scale exercises for
operational evaluation. The ultimate goal is to transition ARC
Nano from prototype to a fielded, widely deployed capability
within the next 1-2 years. Given the modular design, the
same core technology could form the basis of an integrated
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Fig. 9. Hash-chained audit log records provide tamper-evident integrity.

EW ecosystem — from soldier-carried units (ARC Nano) to
team/vehicle systems (ARC Teams) to cloud-level analysis
(ARC Enterprise) [26].

In conclusion, ARC Nano represents a new paradigm for
tactical electronic warfare: it is edge-centric, Al-powered,
and soldier-friendly. It empowers small units with capabilities
that previously required specialized equipment and personnel,
essentially providing an "EW wingman" that is always vigilant
and reacts at machine speed to protect communications and
inform leaders. The research and results presented show that
such a system is not only feasible but highly effective. As
adversaries continue to advance their EW tactics, tools like
ARC Nano offer a proactive counter: an intelligent, adaptable
defense that continuously learns and improves. For military
program evaluators and stakeholders, ARC Nano offers a
compelling combination of technical rigor, demonstrated per-
formance, and alignment with operational needs. By deploying
ARC Nano, the Army can significantly harden its tactical
networks against EW threats and gain valuable situational
awareness of the electromagnetic domain — ultimately giving
our forces the edge in the battle for the spectrum.

Appendices follow, providing additional technical details
and data in support of the ARC Nano system.

APPENDIX A
APPENDIX A: HARDWARE SPECIFICATIONS

Notes: The above specs reflect the prototype and near-term
configuration. As technology evolves, these can be upgraded
(e.g., Jetson Orin NX 16GB module for ~6x Al performance
if needed, or future SDRs with wider bandwidth). The design
philosophy is to use modular COTS parts, so specific com-
ponents can be swapped as long as they meet the interface
requirements. For example, one could integrate a different Al
accelerator or a 2x2 MIMO SDR for future versions with
minimal redesign [26].

APPENDIX B
APPENDIX B: AUDIT LOG SCHEMA AND EXAMPLE

ARC Nano’s audit logging system produces a structured
record for every significant event (detections and actions).
The logs are stored as JSON lines (one JSON object per log
entry), making them easy to parse and analyze. Each entry

is cryptographically linked to the previous entry via a hash,
forming an immutable chain.

Schema Definition: The audit log JSON schema includes
the following fields:

timestamp (string): Time of the event in ISO 8601 format
(UTC, with ms precision).

event_type (string): Type of event, e.g., "DETECTION" or
"ACTION".

details (object): Nested object containing event-specific
data. For a detection, this includes:

freq_hz (number): Detected signal center frequency in Hz.

snr_db (number): Estimated signal-to-noise ratio in dB.

classification (string): Classified identity, e.g., "friendly",
"hostile:;jammer”, or "unknown" (for unrecognized signals).

confidence (number): Confidence score (or risk score for
unknown) between 0-1.

signal_id (string): If known, an identifier for the signal
(e.g., a modulation or emitter ID). "unknown" if not recog-
nized.

For an action event, details includes:

action (string): The action taken, e.g., "FREQ_HOP" or
"POWER_ADJUST".

from_channel (string/mumber): Previous channel or set-
ting (if applicable).

to_channel (string/mumber): New channel or setting ap-
plied.

jammer_type (string): Type of jammer or interference
detected (if identified, e.g., "sweeping" or "barrage").

justification (string): Textual explanation of why the action
was taken.

result (string): Outcome of the event if applicable (e.g., for
an action, "success" once executed, or for detection, perhaps
"mitigated" if an action followed).

prev_hash (string): SHA-256 hash of the previous log
entry (hex-encoded).

curr_hash (string): SHA-256 hash of the current entry’s
content (excluding the hashes).

The combination of prev_hash and curr_hash forms the
hash chain: the very first entry uses a fixed prev_hash (like a
genesis value), and each subsequent entry’s prev_hash equals
the curr_hash of the prior entry. This way, any alteration of a
past entry would break the chain.

Example Log Entries: Below is a simplified example illus-
trating a detection followed by a countermeasure action. (For



TABLE VI

ARC NANO HARDWARE SUMMARY AND SPECIFICATIONS (REPRESENTATIVE CONFIGURATION)

Component

Key specs and features

Computing Module

Software Stack

SDR (Option 1)

SDR (Option 2)

Antenna(s)

Power Supply

Enclosure & Cooling

Environmental

NVIDIA Jetson Orin Nano 8GB — 6-core ARM Cortex-A78AE CPU; NVIDIA Ampere GPU with 1024 CUDA + 32
Tensor Cores (supports FP16/INT8); Al Performance: up to 40 TOPS (dense) in 7-15 W power envelope.

Memory: 8 GB LPDDRS;

Size: 70 mm x 45 mm module; can be mounted on dev carrier (100x80 mm incl. heatsink).

Thermals: Configurable 7 W, 10 W, 15 W power modes. Passive heatsink; active fan recommended at 15 W (or equivalent
chassis cooling).

Interfaces: 1x M.2 Key E (for WiFi/BT), 1x HDMI, 3x USB 3.2, 1x GbE, 4x CSI camera (not all used in ARC Nano).
OS: Linux (Ubuntu 20.04 LTS) with NVIDIA JetPack 5 (CUDA 11).

Notable: No NVENC (HW video encoder) on Orin Nano (unneeded for EW). JetPack guarantees long-term support.
Containerization: All microservices in Docker containers (ARM64).

Middleware: DDS (FastRTPS) pub-sub bus with Redis fallback.

AI Frameworks: PyTorch (training), TensorRT (inference).

Languages: Python/C++ hybrid (Python for high-level logic & bandit, C++ for SDR drivers and some DSP).

Libraries: GNU Radio/UHD or SoapySDR for radio I/O; NumPy, SciPy, scikit-learn for analysis; OpenSSL for hashing
logs.

Telemetry: Cursor-on-Target (CoT) JSON messages for events; ZMQ or REST API for metrics dashboard.

Ettus USRP B205mini-i — 1x1 SDR (one TX, one RX).

Frequency: 70 MHz — 6 GHz.

Bandwidth: up to 56 MHz instantaneous.

ADC / DAC: 12-bit (Max 61.44 MS/s).

RF Front-end: Analog Devices AD9364 RFIC.

TX Power: +10 dBm typical (varies by band).

Noise Figure: ~<8 dB (using AD9364 LNA).

Clock/PPM: 2.5 ppm (internal); support for external GPSDO clock input.

Interface: USB 3.0 SuperSpeed (5 Gbps); bus-powered.

Power Draw: ~3 W (idle) up to ~5 W (max TX) via USB.

Size & Weight: ~83 x 51 mm board, 24 g.

Durability: Tested in lab environments; industrial temperature range (~0-50°C). Typically used with enclosure for field.
LimeSDR Mini v2.0 — 1x1 SDR.

Frequency: 10 MHz — 3.5 GHz (can extend up to ~6 GHz with tweaks, not guaranteed).

Bandwidth: ~30 MHz usable (up to 40 MHz in some modes).

ADC / DAC: 12-bit (Max 30.72 MS/s).

RF Front-end: Lime Microsystems LMS7002M MIMO transceiver.

TX Power: ~0 dBm up to +10 dBm (varies by freq).

Noise Figure: ~6-8 dB at high gain (per community tests).

Interface: USB 3.0 (uses Cypress/FTDI bridge); bus-powered.

Power Draw: ~2.5 W (500 mA @5V).

Size: 69 x 31 mm board (fits in palm).

Notable: Open-source software ecosystem (LimeSuite). Needs external clock ref for higher stability (option). For field,
typically placed in a small case for protection.

30-512 MHz Tactical Whip — Flexible whip or blade antenna, ~1 m length (collapsed for carry). Covers typical VHF/UHF
military comm bands. ~2 dBi gain average (omni).

500 MHz-6 GHz Wideband — e.g. a discone or sleeve dipole covering UHF to C-band. Possibly modular (swappable
short antennas for specific high bands: 2.4 GHz, 5.8 GHz, etc.). ~0 to +3 dBi gain.

Options: Use existing radio antenna via splitter to avoid extra antenna (at cost of sharing). Directional antennas (handheld
log-periodic ~600-6000 MHz) for DF or extended range (not normally carried by individuals, more for vehicles).
Dismounted: Rechargeable Li-ion battery (e.g., BB-2590 or Conformal Wearable Battery). Consumption ~12 W mean,
so (assuming 15V average from pack) ~0.8 A draw. A 150 Wh battery gives ~12 hours. Can hot-swap batteries if needed.
Vehicle: 12 V or 24 V DC input from vehicle power (clamped/regulated to 19 V for Jetson dev kit or 5 V for custom
power routing). System draws ~1-2.5 A depending on voltage. Vehicles have ample power; also opportunity to charge
internal battery from vehicle.

Connector: e.g. MIL-STD circular power connector or USB-C PD (if using modern power delivery). EMI filters on
power input to avoid noise.

Enclosure: CNC milled aluminum case with gasket seal (IP54+). Size target ~ 20 x 15 x 5 cm (example) — about a
"thick novel". Actual prototype currently ~10 x 13 x 6 cm (dev kit + SDR in a temporary case).

Cooling: Passive via aluminum case (fins if needed) for ~10-12 W dissipation in normal climates. Active fan (40 mm, 5
CFM mini-fan) mounted internally for high ambient (>30°C) or sustained 15 W operation. Fan is temperature-controlled
(on ~55°C, off <45°C core temp, for example).

Mounting: Shock-absorbing brackets internally; external brackets for attaching to MOLLE gear or vehicle rack. Quick-
release mount option for vehicles (slide-in dock providing power & external antenna connectors).

Temperature: 0°C to +40°C operational without performance loss (tested). With fan, likely up to +50°C. Cold start
tested to -10°C (some degradation in battery in extreme cold; can mitigate by keeping device warm or using arctic-rated
batteries).

Weather: Designed to withstand rain (enclosure sealed; if fan present, use gore-tex vent or special sealed fan). Not
submersible currently, but could be with passive cooling only.

Vibration/Shock: MIL-STD-810G methods applied in design (unit can survive 4-ft drop and standard vehicle vibration).
All connectors secured (threaded or locking).

readability, line breaks and indentation are added; actual logs are one line per JSON object.)



"2025-09-22T16:00:05.1232",
"DETECTION",

"timestamp":

"event_type":

"details": {
"freqg_hz": 300000000,
"snr_db": 15.2,
"classification": "unknown",
"confidence": 0.95,
"signal_1id": "unknown"

}I

"result": "alerted",

ARC Nano prioritizes accountability. Every decision the Al
makes is documented, enabling trust through verification. This
level of detail in logs is somewhat unique in EW systems,
where black-box EW suites often give minimal insight. We
believe this approach is necessary not just for technical veri-
fication but to satisfy leadership, legal, and ethical oversight
for autonomous systems in the field.

APPENDIX C
APPENDIX C: TEST CASE SUMMARIES

"prev_hash": "000000000000000000000000000000HEs cappendiy osumanzes 0theo key dest 0casen 'used to

"curr_hash": "e3alf5...abcdl234"

"timestamp": "2025-09-22T16:00:05.2192",
"event_type": "ACTION",
"details": {

"action": "FREQ_HOP",

"from_channel": 30.000,
"to_channel": 30.075,
"jJammer_type": "sweeping",
"Justification":
}I
"result":
"prev_hash":
"curr_hash":

"success",
"e3alf5...abcdl234",
"Tb4c9d...ef567890"

In this example, the first entry logs that at 16:00:05.123Z, a
signal at 300 MHz was detected, classified as unknown with
high confidence. The system likely sent an alert (hence result
"alerted"). The prev_hash is all zeros because it’s the first entry
(genesis). The second entry at 16:00:05.219Z shows an action:
the system hopped frequency from 30.000 MHz to 30.075
MHz because it identified a sweeping jammer. The justification
field explains the reasoning in plain language. The prev_hash
of the second entry matches the curr_hash of the first, linking
them. The chain continues like this for all subsequent events.

These logs would typically be stored locally (e.g., on
the Jetson’s storage) and can be periodically backed up or
transmitted (if bandwidth allows, perhaps only summary or in
case of certain triggers). Because they are in JSON, they can
be ingested by log analysis tools or simply opened in a text
editor for review. We also considered a binary logging format
for efficiency, but JSON was chosen for transparency and ease
of use in the prototyping phase [26].

In practice, an audit log review tool could be provided
(maybe as part of an ATAK plugin or a web dashboard)
to display these in a user-friendly way, highlight important
events, and verify the hash chain integrity. For instance, an
officer after a mission could see a timeline: "(10:05) Unknown
signal detected at 300 MHz; (10:05) System hopped radio
from ChA to ChB; (10:07) Jammer ceased; (10:07) System
remained on ChB," etc., with the ability to drill down into
details if needed.

The audit log schema and examples above demonstrate how

// (trunevue ARC Dapapnelpding both simulation scenarios and

planned real-world demonstrations. Each test case is described
with its purpose, setup, and outcomes (referencing results
where applicable).

Simulation Test Cases:

Basic Unknown Signal Detection (3-min scenario): Purpose:
Validate open-set detector in a simple environment.
Setup: Friendly transmitter sends periodic known signals (mix
of FM and PSK). At T+60s, an unknown signal (not in training
set, e.g., a chirp) transmits for 5 seconds. SNRs ~20 dB. No

"Detected sweeping jamm@mming yoeseol) MHz; hopped to avoid interference."

Expectations: ARC Nano should flag the unknown signal dur-
ing its transmission with high confidence, and not misclassify
any friendly signals as unknown.

Outcome: Achieved 100% detection of the chirp (each of 3
runs) with O false alerts. Friendly signals consistently classi-
fied correctly. Logs showed "DETECTION unknown" events
during the chirp, and CoT alert was issued. [12], [13]

Closed-Set vs Open-Set Classification Challenge: Purpose:
Ensure OSR outperforms a conventional classifier on novel
signals.

Setup: A variety of modulated signals (AM, 4FSK, QPSK)
including one modulation not in training (e.g., MSK). One
emitter switches through these mods.

Expectations: Traditional closed-set model would mislabel
MSK as something else, whereas ARC Nano’s OSR should
label MSK as unknown.

Outcome: As expected, closed-set baseline misclassified MSK
90% of the time (often as FSK), whereas ARC Nano labeled
MSK as unknown >95% of time, with risk score ~0.9. No
false unknowns on the known mods.

Single-Jammer Communication Disruption (3-min jam):
Purpose: Measure EP effectiveness for a short jammer en-
counter.

Setup: Friendly link (source to sink sending data at 0.5 Mbps)
on fixed Channel A. At T+30s, a jammer begins jamming
Channel A (narrowband, +20 dBm JNR) for 60 seconds then
stops. Two runs: one with ARC Nano off, one with ARC Nano
on (allowed to hop to Channel B).

Metrics: Link availability, throughput, recovery time.
Outcome: Without ARC, link dropped ~2s after jammer start
and remained down until jammer stopped (availability ~48%,
throughput ~0.25 Mbps due to initial period) — essentially
no comms during jam. With ARC, link hopped ~0.3s af-
ter jam start, regained throughput >80% nominal within 1s.
Availability 99%, throughput ~0.47 Mbps. Recovery time



~0.8s (including detection latency). Matched values in Results
Table IV for 180s scenario.

Dual-Jammer Stress (10-min, high unknown density): Pur-
pose: Torture-test both ES and EP components together.
Setup: Two enemy jammers (one sweeping across a band,
one fixed-tone) alternate activation every 60s over 10 minutes,
overlapping for some periods. Background: multiple friendly
signals and 30% unknown signals (various untrained wave-
forms) appear randomly. Friendly comm link under protection
tries to send continuous traffic. ARC Nano fully on (detect
+ protect). This was repeated 4 times with different random
seeds.

Metrics: Unknown detection TPR/FPR, link metrics, network
overhead.

Outcome: Unknown TPR ~90.2%, O false/day FPR as re-
ported. Link availability baseline ~46%, with ARC ~99.97%;
throughput baseline ~0.29 vs 0.45 Mbps with ARC; avg
recovery 0.2s. Telemetry bandwidth ~101.7 kbps peak. These
align with Table IIT and 2 in main text. All log chains verified
intact; no policy violations (logs confirmed hops stayed in
allowed channels). [7]

Telemetry Flood Test: Purpose: Ensure telemetry shaping
works under extreme event rates.

Setup: Artificially generate a worst-case: 10 unknown signals
per second (beyond realistic), each causing an alert, plus EP
actions every second. Bandwidth budget 200 kbps.
Expectation: System should throttle or queue messages to not
exceed 200 kbps. No crash due to overload.

Outcome: Network usage peaked ~180 kbps, never crossed
budget. Some less critical messages were dropped (per design)
when queue filled, but essential alerts got through. System
remained stable. This shows margin in telemetry design.

Hardware (HIL) Test Cases:

Hardware Functional Test (Bench, Quiet): Purpose: Verify
end-to-end operation on real hardware.

Setup: Jetson Orin Nano dev kit + B205mini SDR. Antenna
in shielded room with no significant signals. Run ARC Nano
containers.

Steps: Transmit a known test signal from a signal generator
(friendly signal profile) at low level. Verify detection and
correct classification on Jetson. Then introduce one jammer
recording playback to SDR, see that EP triggers a hop on a
dummy radio (or at least logs an action).

Outcome: The Jetson pipeline ran ~10x faster than real-time
in quiet conditions (no backlog). Detected known signals fine
(friendly classification). When jammer playback started, EP-
Lite issued a hop command within ~50 ms (observed via
log timestamps). We measured ~70 ms from detection to
action output, meeting our sub-100 ms goal. The dummy radio
(emulated) switched channel as commanded. This established
basic functionality. [26]

Latency & Throughput Characterization (HIL): Purpose:
Measure detection and hop latencies and analog performance
on hardware.

Setup: Use signal generator to produce a bursty unknown
signal at various SNRs and measure detection delay (time from
signal on-air to CoT alert). Also measure time from jamming
onset to radio hop (with two SDRs: one as jammer, one as

radio). Additionally, feed a continuous data stream to quantify
throughput.

Outcome: Detection latency ~20 ms at high SNR (30 dB),
~40-50 ms at lower SNR (~10 dB) — mainly constrained
by our detection window length (which is adjustable). Hop
decision latency ~50 ms after detection, plus radio tuning time
~10 ms, total ~60 ms typical. End-to-end restore times were
~100-150 ms, slightly better than sim because hardware tuning
was fast. Throughput on a real link (using two SDRs as Tx/Rx)
went from O to near-full and back to 0 as expected; with ARC
Nano, only a brief dip. These support the sim results and give
confidence in timing. [12], [13]

Thermal Run (0°C & 40°C): Purpose: Ensure system
maintains performance at temperature extremes and doesn’t
overheat or throttle.

Setup: Place device in environmental chamber. At 0°C: cold
start it, run a standard scenario. At 40°C: run a 15 W high-
load scenario for 30+ minutes. Monitor CPU/GPU clocks and
throttling indicators.

Outcome: At 0°C, no issues; system started and ran (Jetson
module warmed itself during operation). At 40°C ambient,
after ~20 min continuous high load, the Jetson did not throttle
(peak GPU temp ~75°C, which is high but within limits). The
internal fan kicked on at 60°C as designed and stabilized the
temperature. Performance metrics at 40°C run were unchanged
from room temp, indicating the cooling solution is adequate
for that range. We’ll test beyond 50°C with a fan in future if
needed. [26]

Planned Field Demo Cases:

Live Jammer Field Demo: Purpose: Demonstrate ARC Nano
in an operationally relevant setting to stakeholders.

Setup: Two tactical radios (e.g. PRC-148s or similar or SDR-
based emulators) set up ~500 m apart to simulate a platoon net.
One radio at HQ, one with a "squad". ARC Nano connected
to squad’s radio. A jammer (e.g. an EW training system or
another SDR) positioned to jam the squad’s radio frequency
when triggered. Use standard voice or data over the radios.
Observers have ATAK devices subscribed to ARC Nano’s CoT
feed.

Plan: Start with ARC Nano off — demonstrate that when
jammer activates, comms are lost (e.g., voice call drops or data
pings fail). Then enable ARC Nano — when jammer activates
again, show that within a second the comms resume (squad
radio frequency hops, voice call continues). Also show on
ATAK that a "jammer detected/hop executed" alert popped
up with time and location (if location known). Possibly repeat
with different jams (e.g., different frequencies).

Success Criteria: Radio link stays operational during jamming
with ARC Nano on. ATAK correctly displays alerts. No
unintended behaviors (e.g., ARC Nano doesn’t hop when not
needed, etc.).

Status: In preparation. Early partial tests using a low-power
jammer and close range have been successful, matching lab
results (link maintained). Full demo pending range scheduling.
[12], [13]

Multi-Node Network Test (Future): Purpose: See how mul-
tiple ARC Nanos might cooperate or interfere.

Setup: Three squads each with ARC Nano on different but



overlapping nets. Introduce jamming that affects two squads,
etc. Possibly see if one unit’s detection alert can cue others.
This is more of a future experiment beyond current integration,
included for completeness of test planning.

Expectation: Each unit handles its own jam. If networked at
CoT server, one’s detection could be seen by others (though
currently they don’t automatically react to others’ detections
unless jamming also locally sensed). Could explore design of
collaborative hopping (future feature). [12], [13]

These test cases collectively ensured that ARC Nano was
evaluated across a spectrum of conditions — from ideal to
worst-case — and that it meets its design requirements. The
simulation tests established baseline performance and allowed
fine-tuning in a controlled way, while the HIL and field tests
bridge to real-world operation, uncovering any practical issues
(none significant so far). By documenting and summarizing
them here, we provide evidence for the claims made in the
main body of the paper and a reference for others aiming to
replicate or build upon this work.
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