577 Industries Inc.

5771 Forge: A Staged Post-Training Architecture for
Operational Deployment of Large Language Models

Thomas Waweru
577 Industries R&D Lab, Columbus, Ohio, USA

Abstract—Deploying foundation language models in regulated, resource-constrained, or security-sensitive environments requires
systematic post-training procedures that address task adaptation, computational efficiency, behavioral alignment, and governance
compliance simultaneously. Existing approaches typically address these concerns in isolation, leading to integration failures,
unpredictable trade-offs, and pilot-to-production gaps that limit enterprise adoption. This paper presents 577i Forge, a four-stage post-
training architecture that systematically transforms foundation models into operationally deployable systems through: (1) parameter-
efficient supervised adaptation using Low-Rank Adaptation (LoRA) and QLoRA, (2) model compression via knowledge distillation and
post-training quantization, (3) preference-based alignment using Direct Preference Optimization (DPO) with domain-specific safety
constraints, and (4) governance-aware deployment with full artifact traceability. We formalize the multi-objective optimization problem
underlying staged post-training and derive stage-ordering principles based on gradient interference analysis. Comprehensive experiments
across Llama-2 (7B, 13B, 70B) and Mistral-7B models on seven benchmarks demonstrate that 577i Forge achieves 94.2% average task
performance retention while reducing inference latency by 73.8% and memory footprint by 81.2% compared to full-precision baselines.
Safety evaluations show 31.4% improvement on Truthful QA and 89.3% jailbreak resistance on adversarial benchmarks. Ablation studies
confirm that the proposed stage ordering outperforms alternative sequences by 8.3—15.7% on composite metrics. Case studies in defense
(IL5/IL6 sovereign deployment), healthcare (HIPAA-compliant documentation), financial services (regulatory compliance), and edge
computing validate the framework's practical applicability. The governance model ensures complete traceability from data provenance
through signed release artifacts, addressing a critical gap in production Al systems.

Index Terms—Large language models, post-training, fine-tuning, LORA, QLoRA, knowledge distillation, quantization, alignment, RLHF,
DPO, Constitutional AI, sovereign deployment, edge Al, Al governance, MLOps.

I. INTRODUCTION

The rapid advancement of foundation language models has created unprecedented opportunities for automating complex cognitive
tasks across industries. Models such as GPT-4 [1], Llama-2 [2], and Mistral [3] demonstrate remarkable capabilities in natural
language understanding, generation, and reasoning. However, deploying these models in regulated, resource-constrained, or
security-sensitive environments remains a significant engineering challenge that extends far beyond the initial pretraining phase

(4], [5].

Enterprise adoption of generative Al exhibits a characteristic pattern: organizations rapidly investigate and pilot foundation
models but face substantial friction when transitioning to production deployment. A 2025 study by MIT's Project NANDA found
that task-specific generative Al tools show a steep adoption funnel, with approximately 60% of organizations investigating such
tools, 20% reaching pilot stage, and only 5% achieving production deployment [6]. This 'pilot-to-production gap' represents a critical
bottleneck that limits the practical impact of large language model (LLM) technology.

The gap arises from multiple interacting factors that existing approaches address only partially. First, task adaptation requires
transferring general capabilities to domain-specific requirements while preserving beneficial base behaviors—a balance that naive
fine-tuning often fails to achieve [7]. Second, computational constraints in deployment environments frequently preclude direct use
of full-precision multi-billion parameter models, necessitating compression techniques that introduce quality trade-offs [8]. Third,
behavioral alignment must satisfy both generic safety requirements and domain-specific policy constraints that vary across
deployment contexts [9], [10]. Fourth, governance requirements in regulated industries demand complete auditability from training
data through deployed artifacts—a provenance chain that ad-hoc approaches typically cannot provide [11].

Current practice addresses these concerns through disconnected toolchains and manual integration. Organizations may use one
framework for fine-tuning, another for quantization, and yet another for alignment, with limited coordination between stages. This
fragmentation leads to three failure modes: (1) optimization conflicts, where improvements in one dimension degrade another; (2)
evaluation gaps, where stage-specific metrics fail to predict end-to-end system behavior; and (3) governance breaks, where the
connection between artifacts and their provenance is lost across tool boundaries.

577 Industries Inc.

This paper presents 577i Forge, an integrated post-training architecture that addresses these challenges through a principled
four-stage pipeline with explicit interfaces, measurable acceptance criteria, and comprehensive governance artifacts. The framework
organizes post-training into a sequence of Adapt, Compress, Align, and Deploy stages, each targeting specific operational objectives
while maintaining compatibility with subsequent stages.

A. Contributions

The primary contributions of this work are fivefold:

1) Formal Problem Formulation: We formalize staged post-training as a constrained multi-objective optimization problem and
derive theoretical justification for stage ordering based on gradient interference analysis (Section IIT).

2) Integrated Architecture: We present the 5771 Forge pipeline architecture with explicit stage interfaces, acceptance criteria, and
feedback mechanisms that enable systematic quality control (Section I'V).

3) Comprehensive Experimental Evaluation: We conduct extensive experiments across four model families (Llama-2-7B,
Llama-2-13B, Llama-2-70B, Mistral-7B) and seven benchmarks, demonstrating 94.2% task retention with 73.8% latency reduction
and 31.4% safety improvement (Section V).

4) Governance Framework: We introduce a governance model that binds data provenance, training configuration, evaluation
evidence, and policy constraints to cryptographically signed release artifacts (Section IV-F).

5) Domain Validation: We present case studies across defense (sovereign deployment), healthcare (HIPAA compliance), financial
services, and edge computing that validate practical applicability (Section VI).

B. Paper Organization

The remainder of this paper is organized as follows. Section II reviews related work in parameter-efficient fine-tuning, model
compression, alignment, and deployment engineering. Section III formalizes the post-training optimization problem and derives
stage-ordering principles. Section IV presents the 5771 Forge architecture in detail. Section V describes experimental methodology
and results. Section VI presents domain-specific case studies. Section VII discusses limitations and broader implications. Section
VII concludes with directions for future work.

II. RELATED WORK

Post-training encompasses techniques applied after pretraining to adapt foundation models to specific tasks, domains, or policy
regimes. We organize related work into four categories corresponding to the Forge pipeline stages, plus a discussion of integrated
approaches.

A. Parameter-Efficient Fine-Tuning

Full fine-tuning of billion-parameter models requires substantial computational resources and risks catastrophic forgetting of
pretrained capabilities [12]. Parameter-efficient fine-tuning (PEFT) methods address these limitations by updating only a small
subset of parameters while keeping the base model frozen.

Low-Rank Adaptation (LoRA) [13] introduces trainable low-rank decomposition matrices into transformer attention layers,
reducing trainable parameters by 10,000 while maintaining task performance within 1-2% of full fine-tuning on most benchmarks.
The key insight is that weight updates during adaptation have low intrinsic rank, enabling efficient parameterization as W + BA
where B € R¥"and A € R™ with rank r <« min(d,k).

QLoRA [14] extends this approach by enabling adapter training over a 4-bit quantized base model using a novel NF4 (Normal Float
4-bit) data type and double quantization. This reduces GPU memory requirements by approximately 4x compared to standard
LoRA, enabling fine-tuning of 65B parameter models on a single 48GB GPU. QLoRA demonstrates that quantization-aware adapter
training can match 16-bit fine-tuning performance across diverse benchmarks.

Alternative PEFT approaches include Adapters [15], which insert small bottleneck modules between transformer layers; Prefix
Tuning [16], which optimizes continuous prompts prepended to inputs; and (IA)® [17], which rescales activations using learned
vectors. Comparative studies [18] show that LoRA achieves the best trade-off between parameter efficiency and task performance
for most scenarios, motivating its selection as the primary adaptation method in Forge.

577 Industries Inc.

B. Model Compression

Deployment constraints frequently require reducing model size and inference cost below what full-precision models can achieve.
The primary compression techniques are knowledge distillation, quantization, and pruning.

Knowledge distillation [19] trains a smaller 'student' model to match the outputs of a larger 'teacher' model, transferring capabilities
while reducing parameter count. For language models, distillation can target logit distributions [20], intermediate representations
[21], or task-specific behaviors [22]. DistilBERT [23] demonstrated that distillation can reduce BERT model size by 40% while
retaining 97% of language understanding capabilities.

Quantization reduces the numerical precision of model weights and activations. Post-training quantization (PTQ) methods such as
GPTQ [24] and AWQ [25] enable 3-4 bit weight representation with minimal accuracy loss by solving layer-wise reconstruction
problems. Quantization-aware training (QAT) [26] incorporates quantization effects during training for potentially better results at
the cost of additional compute. For transformer models, GPTQ achieves INT4 quantization with less than 1% perplexity increase
on language modeling benchmarks.

Structured pruning removes entire architectural components (attention heads, layers, or dimensions) based on importance scores
[27]. While effective for CNN architectures, structured pruning of transformers often requires significant retraining to recover
performance [28]. Unstructured pruning achieves higher compression ratios but requires specialized sparse hardware for inference
speedups [29].

C. Alignment and Safety Tuning

Alignment methods aim to make model behavior more helpful, harmless, and honest while satisfying domain-specific policy
constraints.

Reinforcement Learning from Human Feedback (RLHF) [30], [31] represents the predominant alignment paradigm. The approach
involves three phases: (1) supervised fine-tuning on demonstrations, (2) training a reward model from human preference
comparisons, and (3) optimizing the policy model against the reward model using Proximal Policy Optimization (PPO) [32].
InstructGPT [31] showed that RLHF dramatically improves instruction-following and reduces harmful outputs compared to
supervised fine-tuning alone.

Direct Preference Optimization (DPO) [33] provides a simpler alternative by directly optimizing the language model from
preference pairs without an explicit reward model. DPO derives a closed-form loss function that implicitly represents the reward
model, eliminating the instabilities and hyperparameter sensitivity of PPO-based RLHF while matching or exceeding its
performance on alignment benchmarks.

Constitutional AT (CAI) [34] introduces rule-based principles (‘constitutions') that guide model behavior through Al feedback rather
than human labeling. The approach uses a red-teaming phase to elicit harmful outputs, followed by revision using constitutional
principles, enabling scalable alignment with reduced human annotation requirements.

Domain-specific alignment extends these general methods to particular deployment contexts. For healthcare applications, alignment
must address clinical safety, appropriate scope of advice, and referral behaviors [35]. For financial services, alignment encompasses
regulatory compliance, disclosure requirements, and restricted investment advice [36]. These domain constraints require customized
evaluation protocols beyond generic safety benchmarks.

D. Deployment Engineering and MLOps

Production deployment of language models requires infrastructure for efficient inference, monitoring, and governance. Serving
engines such as vLLM [37] and TensorRT-LLM [38] optimize throughput through techniques including continuous batching,
PagedAttention memory management, and kernel fusion. These systems can improve serving throughput by 10-24x compared to
naive implementations.

Speculative decoding [39] accelerates autoregressive generation by using a smaller draft model to propose multiple tokens that a
larger verifier accepts or rejects in parallel, achieving 2-3x speedups while preserving the output distribution of the verifier model.

577 Industries Inc.

MLOps practices for LLM deployment include model versioning, A/B testing, canary deployments, and drift detection [40].
However, existing MLOps frameworks designed for traditional ML models often lack support for the unique characteristics of
generative models, including prompt management, output quality monitoring, and safety guardrails [41].

E. Integrated Post-Training Approaches

Several recent works address post-training integration. LLaMA-Factory [42] provides a unified interface for fine-tuning with
support for multiple PEFT methods and quantization. OpenLLM [43] focuses on serving infrastructure with model optimization
plugins. Axolotl [44] emphasizes configuration-driven fine-tuning workflows.

However, these systems primarily address tool integration rather than systematic pipeline design. They lack formal stage interfaces,
acceptance criteria, governance artifacts, and principled stage ordering. The 5771 Forge framework addresses these gaps by
providing not just tooling but an architectural specification with theoretical grounding and comprehensive evaluation methodology.

III. PROBLEM FORMULATION

This section formalizes the post-training optimization problem and derives theoretical justification for the Forge stage ordering.

A. System Model

Let My denote a pretrained foundation model with parameters 0y € R¢. The model defines a conditional distribution pe(y|x) over
outputs y given inputs x. Post-training seeks to transform My into a mission-ready model M* that satisfies task performance,
efficiency, safety, and governance requirements.

We model the deployment environment through a constraint set C = (H, L, S, G) where:

* H = {hmem, hcompute, hpower} specifies hardware constraints (memory budget, compute budget, power envelope)
* L = {liatency, lthroughput} specifies latency and throughput requirements

* S = {Ssafety, Spolicy} Specifies safety and policy compliance thresholds

* G = {Zprovenance, Zaudit} Specifies governance and auditability requirements

B. Multi-Objective Optimization

Post-training can be formalized as a constrained multi-objective optimization problem:
0% = argmin [L_task(6) + L.L_compress(6) + A:L_align(6) + AsL_deploy(6) |
subject to the constraints:

mem(0) <h_mem, lat(0) <l latency, safety(0)>s_safety

where L.« measures task performance degradation from the base model, Lcompress measures efficiency relative to targets, Laign
measures safety and policy compliance, and Lgepioy measures operational readiness. The hyperparameters A;, A2, A3 > 0 control the
trade-offs between objectives.

Direct joint optimization of this objective is intractable for several reasons. First, the loss components operate on different scales
and exhibit different gradient dynamics. Second, the constraints interact non-linearly—aggressive quantization affects both task
performance and alignment stability. Third, the governance requirements G cannot be expressed as differentiable objectives but
must be satisfied through procedural controls.

C. Staged Decomposition

Forge addresses tractability through a staged decomposition that solves a sequence of simpler subproblems:
Stage 1 (Adapt): 0, = argmin L,u(0) subject to 6 € Operr(00)

Stage 2 (Compress): 0, = argmin Lcompress(0) subject to ALtask(0, 01) < &rask
Stage 3 (Align): 63 = argmin Laiign(0) subject to 0 initialized from 6,

Stage 4 (Deploy): Package 0; with governance artifacts satisfying G

577 Industries Inc.

This decomposition makes each stage tractable while maintaining explicit constraints that preserve properties established in prior
stages.

D. Stage Ordering Justification

The Adapt — Compress — Align — Deploy ordering is not arbitrary but derives from gradient interference analysis and practical
considerations.

Theorem 1 (Adaptation Priority): Task-specific adaptation should precede compression because adaptation gradients in the full-
precision space provide more stable optimization than adaptation in quantized parameter spaces.

Sketch: QLoRA [14] demonstrates that adapter training over quantized bases is effective, but the underlying base model must be
stable. Adapting after compression would require propagating gradients through quantized weights, introducing noise proportional
to quantization error. By adapting first in full precision (or with QLoRA's careful handling), we obtain cleaner task-specific updates.

Theorem 2 (Compression Before Alignment): Compression should precede alignment because alignment on a compressed model
directly optimizes the deployment representation, whereas alignment before compression may not transfer through quantization.

Sketch: Alignment tuning modifies subtle behavioral properties that depend on precise activation patterns. Post-training quantization
perturbs these patterns, potentially disrupting aligned behaviors. By compressing first, alignment operates on the actual deployment
representation, ensuring that aligned behaviors manifest in the final model.

Theorem 3 (Deployment as Terminal Stage): Deployment packaging must be terminal because governance artifacts must capture
the final model state, and any subsequent modification would invalidate provenance chains.

We validate these theoretical principles empirically in Section V-D through ablation studies comparing alternative stage orderings.

IV. 5771 FORGE ARCHITECTURE

This section presents the detailed architecture of the 5771 Forge post-training pipeline, including stage specifications, interfaces,
and governance mechanisms.

A. Architecture Overview: 577i Forge post-training pipeline with staged objectives, acceptance criteria, and governance
artifacts. Feedback loops enable iterative refinement based on deployment telemetry.

7 (EVALUATION&). Feedback Loop (Deployment Telemetry & User Feedback)
EVALUATION |« | REFINEMENT J*)

(" STAGE1:ADAPT) (" STAGE 2: COMPRESS) (STAGE3:ALIGN) (" STAGE 4: DEPLOY)
Inputs: Foundation Model, Inputs: Adapted Model (M1), Inputs: Compressed Model (M2), Inputs: Aligned Model (M3),
Task Data, Domain Corpus Constraints, Calibration Data Preference Data, Policy Specification Depluymenl Target, SLOs

(LoRA/QLORA), (Distillation, GRTQ/AWQ ituti (Packaging, Runtime Opt.,
Quanization) :> (DPO/RLHF, Constitutional Al) :> Secunty Controls)
=== == =

Instruction Tuning
(" Acceptance Criteria: | " 7 Acceptance Criteria: \. ‘ Acceptance Criteria:

_ | —
(A ince Criteria:

Task Accuracy > Tk, Safety Score > 8yin, SLO Compliance,

Transformation: Explicit Transformation: Explicit Transformation: Explicit Transformatlon

Parameter-Efficient Adaptation Interface Model Compression Interface Preference-Based Alignment Interface Govemnance-Aware Deployment

)‘ Lalency < lrax,]l
_J I

Regression Pass, Memory < 1max, Refusal Accuracy, | Security Scan Pass,
Cahbrauun wnhm baunds [QuaiyA<e | Jailbreak Resistance) _ ValidSignatures
Output: Output: Deployed System (M*)
Adapted bf:del (M1) Aligned I\.!t))del (M3) & Release Artifacts
A : S o - J o v
I\ 1
| o= - A 1
A 4 A 4 Feedback Loop
(Deployment Telemetry
GOVERNANCE Dataset | — - —»] Adaptation Compresgionll _ __ . _ __ . ______. Alignment & User Feedback))
ARTIFACTS Datasheets Report & Report &
Checkpoint Safety Eval

577 Industries Inc.

Figure 1 illustrates the Forge pipeline. The architecture consists of four sequential processing stages connected by explicit interfaces.
Each stage receives inputs from its predecessor, applies transformations targeting specific objectives, and produces outputs that
satisfy defined acceptance criteria before passing to the successor stage. The pipeline incorporates a feedback loop from deployed
systems back to the alignment and evaluation stages. This enables continuous improvement based on production telemetry while
maintaining governance integrity through versioned releases.

Table I summarizes the stages with their primary objectives, typical methods, and acceptance metrics.

TABLE I
5771 FORGE POST-TRAINING STAGES AND ACCEPTANCE CRITERIA
Stage Primary Objective Typical Methods Acceptance Metrics
> : i
Domain/task performance under LoRA, QLoRA, instruction tuning, Tgsk accuracy = T—.taSk’ fregression
1. Adapt . . suite pass; calibration within
parameter constraints data filtering
bounds
2 Compress Reduce latency and memory Knowledge distillation, Latency <1 max; memory <
' P with minimal quality loss GPTQ/AWQ quantization, pruning m_max; quality A <eg
. Policy compliance and safety =~ DPO, RLHF, Constitutional AI, |Safety score > s min; refusal
3. Align . . —
behavior refusal tuning accuracy; red-team pass rate
4 Deplo Reliable delivery with Packaging, runtime optimization, |SLO compliance; security scan
- Ueploy governance compliance signing, monitoring setup pass; artifact signatures valid

B. Stage 1: Adapt

The adaptation stage transforms the foundation model to achieve domain-specific task performance while respecting parameter
efficiency constraints.

Inputs: Base model M, with parameters 0o; task-specific training data Dy optional domain corpus Dyomain; adapter configuration
(rank r, target modules, learning rate schedule).

Process: We employ QLoRA [14] as the default adaptation method due to its favorable memory efficiency and demonstrated
performance. For a target weight matrix Wy € R** QLoRA maintains Wy in 4-bit NF4 format while training adapter matrices B €
R¥"and A € R™ in full precision. The effective weight becomes W = W, + sBA where s is a scaling factor.

The adaptation objective minimizes task-specific loss while regularizing adapter weights:
L adapt =X L _task(x, y; 6o + 46) + 1||40)|?

where Lk is typically cross-entropy for language modeling or task-specific objectives for classification/extraction tasks.

Outputs: Adapted model M; = (69, AB) where AO represents learned adapter parameters; adapter checkpoint; training logs;
evaluation metrics on validation set.

Acceptance Criteria: (1) Task performance on held-out evaluation set exceeds threshold tws; (2) Regression suite detecting
capability loss on baseline behaviors passes with < 5% degradation; (3) Calibration metrics (ECE, MCE) remain within acceptable
bounds for uncertainty-sensitive applications.

C. Stage 2: Compress
The compression stage reduces model size and inference cost while preserving task performance established in Stage 1.
Inputs: Adapted model M;; target constraints (memory budget mmax, latency target lmax); calibration dataset Dcaii, for PTQ; optional

teacher model for distillation.
Process: Forge supports multiple compression strategies selectable based on deployment constraints:

Quantization. We apply GPTQ [24] for weight-only quantization to INT4 or INT3 precision. GPTQ solves a layer-wise
reconstruction problem that minimizes the squared error between full-precision and quantized outputs on a calibration set. For

577 Industries Inc.

models requiring activation quantization (INT8), we apply SmoothQuant [45] to migrate quantization difficulty from activations to
weights.

Knowledge Distillation: When target deployment requires a smaller architecture (e.g., 7B — 1.3B), we apply sequence-level
distillation using the adapted model as teacher. The student minimizes a combination of task loss and KL divergence from teacher
logits:

L distill = a-L_task(y, y_student) + (1-0)-T*KL(p_teacher/T || p_student/T)

where T is the temperature hyperparameter and o balances hard and soft labels.

Runtime Optimization: Independent of model compression, we apply runtime optimizations including graph optimization (operator
fusion, memory planning), mixed-precision inference (FP16 compute with FP32 accumulation), and serving optimizations
(continuous batching, KV cache management).

Outputs: Compressed model M, in deployment-ready format (GGUF, ONNX, or TensorRT engine); compression report
documenting bit-widths, calibration data, and quality deltas.

Acceptance Criteria: (1) Memory footprint < mmax; (2) Inference latency < lmax at target batch size; (3) Task performance
degradation < gcompress (typically 2-5% relative); (4) No new failure modes introduced (checked via regression suite).

D. Stage 3: Align

The alignment stage optimizes model behavior for safety, helpfulness, and domain-specific policy compliance.

Inputs: Compressed model M,; preference dataset Dprer = {(X, Yw, ¥1)} of prompts with preferred and dispreferred responses; policy
specification P defining required refusals, tone constraints, and disclosure requirements; safety evaluation suite.

Process: We employ Direct Preference Optimization (DPO) [33] as the primary alignment method due to its stability and efficiency.
DPO optimizes the policy directly from preference pairs using the loss:

L DPO = -Eflog o(f-(log = _O(y_w|x)/m_ref(y wix)-logm O(v_l|x)/x_ref(y_l|x)))]

where 7r is the reference model (M), 7o is the model being optimized, yw and y; are winning and losing responses, and 3
controls the deviation from the reference policy.

For domain-specific policies, we extend the preference dataset with synthetic examples generated through Constitutional Al
principles [34]. A red-team process elicits policy-violating outputs, which are then revised according to policy rules to create
preference pairs.

Outputs: Aligned model M3; alignment checkpoint; preference dataset used; safety evaluation report; red-team test results.
Acceptance Criteria: (1) Safety score on TruthfulQA > syumsu; (2) Toxicity score < tmax on RealToxicityPrompts; (3) Refusal
accuracy on policy-specific test set > rmin; (4) Jailbreak resistance rate > jmin on adversarial prompts; (5) Helpfulness degradation <
hmax on MT-Bench or similar.

E. Stage 4: Deploy

The deployment stage packages the aligned model for operational use with appropriate runtime infrastructure, monitoring, and
access controls.

Inputs: Aligned model M3s; deployment target specification (cloud, on-premises, edge, air-gapped); service-level objectives
(SLOs); monitoring requirements; access control policies.
Process: Deployment engineering encompasses several components:

Packaging: The model is packaged with its runtime dependencies, configuration, and metadata into a reproducible deployment
artifact. For containerized deployments, this produces an OCI-compliant image. For edge deployments, this produces a self-
contained binary or library.

Runtime Configuration: Serving infrastructure is configured for the target environment. Options include vLLM [37] for high-
throughput GPU serving, llama.cpp [46] for CPU and edge deployment, or TensorRT-LLM [38] for optimized NVIDIA GPU
inference. Configuration specifies batch sizes, caching strategies, and resource limits.

577 Industries Inc.

Security Controls: Access controls implement principle of least privilege for model endpoints. For sovereign deployments, this
includes network isolation, encryption at rest and in transit, and audit logging. For cloud deployments, integration with identity
providers and API management platforms.

Monitoring Setup: Observability infrastructure captures inference requests and responses (subject to privacy policies), latency
distributions, error rates, and resource utilization. Alerts are configured for SLO violations and anomaly detection.

Outputs: Deployment package; release manifest; security scan results; SLO configuration; monitoring dashboards; incident
response procedures.

Acceptance Criteria: (1) Security scan passes with no critical vulnerabilities; (2) Load testing confirms SLO compliance at target
throughput; (3) Failover and recovery procedures validated; (4) Monitoring coverage verified for key metrics; (5) Access controls
reviewed and approved.

F. Governance Framework

A distinguishing feature of 5771 Forge is its comprehensive governance framework that maintains traceability from data provenance
through deployed artifacts, with each pipeline stage producing versioned documentation that connects inputs, process configuration,
and outputs. Figure 2 illustrates this governance artifact chain, showing how gate reviews and cryptographic integrity verification
ensure end-to-end accountability from raw data through signed release artifacts.

. "
= i s H H
» .
PRE-PIPELINE: STAGE 1: ADAPT STAGE 2: COMPRESS STAGE 3: ALIGN STAGE 4: DEPLOY H DEPLOYED :
DATA : ARTIFACTS
PROVENANCE e NG | HECHS BECTS t i (TRACEABLE)
) Foundation Model (Base Card) | Adapted Model (M1) Hash Compressed Model (M2) Hash | Aligned Model (M3) Hash E
A ¢ Task Data (Datasheet Link) Deployment Constraints Preference Data (Datasheet Link) Deployment Target '
: Domain Carpus Calibration Data (Datasheet Link) Policy Specification SLOs & Security Policies '
- H
; ¥ v v 3 :
! PROGESS CONFIGURATION PROCESS CONFIGURATION PROCESS CONFIGURATION PROCESS CONFIGURATION H 0
TRAINING DATA 1 T - T I = =TT — E :
Source, Collection, 1 LoRA/QLoRA Config Quantization Config (GPTQ/AWO) DPO/RLHF Config Packaging Config ' DEPLOYED [
Fiftering, Bias Analysis, | ! Hyperparameters Distiilation Setup Constitutional Principles Runtime Sep v SYSTEM (M%)
Permitted Uses, I Training Data Selection I Pruning Strategy \ Safety Constraints Security Controls [
Retention ' — - = ;— e — —il
L v ; v ‘ , P :
BOVERI_IANE E AR_TIEAET_ | GOVER?_I@NGI’: A_RTIFAGT [GOV_ERN.INI:E A!TTIF_ACT | GOVERNANCE ARTIFET E E
—_— ADAPTATION REPORT COMPRESSION ALIGNMENT REPORT RELEASE MANIFEST & H H
— & CHECKPOINT REPORT & CONFIG & SAFETY EVAL SIGNED ARTIFACTS E E
— : Training Config & Metrics Quantization Details Preference Data Hash Links to All Upstream : VERSIONED .
a k= &p Regression Test Results * Calibration Data Hash * DPO Config & Metrics * Artifacte (Hashes) # RELEASE E
DATASET Adapter Checkpoint Hash | Quality Delta & Latency Safety Score & Red-Team | |SBOM (Software Bill of Materials)| s ARTIFACTS '
DATASHEET Reviewer Sign-off Metrics Results Security Scar] Results ' (e.g., Container :
Vo foni Reviewer Sign-off [Policy Compilance Audit $LO & Monitoring Config : |ma'ge Binary) :
el[.‘.sclag?:nt Hashes, ‘ Reviewer Sign-off Approval Chain : ' :
Provenance Details s) &) | ‘ Cryptograp =2 [T . S h
E Complete Audit Trail & E
e ® Wi ® diie ® i ® t Provenance Chain for s
=7 - =7 &7 1 Regulatory Compliance «
REVEW Reviewer REVIEW Reviewer REVIEW Reviewer REVIEW Revie;ler E and Accwntaﬁ'm)'- E
Signature : Signature ; Signature : Signature ;& s
1 ek (LT T -
More specifically:

Dataset Documentation: Following the Datasheets for Datasets framework [47], each training dataset is documented with
collection methods, filtering criteria, known biases, permitted uses, and retention requirements. Dataset versions are immutably
stored with content hashes.

Model Documentation: Following the Model Cards framework [48], each model version is documented with intended use, out-
of-scope use, evaluation methodology, limitations, and training configuration. Model documentation links to its training data
documentation and any predecessor models.

Evaluation Reports: Each stage gate produces an evaluation report documenting test results, metric values, pass/fail
determinations, and reviewer sign-off. Reports are versioned and linked to the specific model checkpoint evaluated.

577 Industries Inc.

Release Manifests: Final deployment packages include a manifest linking all upstream artifacts (dataset hashes, model card,
evaluation reports) with cryptographic signatures. The manifest enables audit trails answering questions such as: 'What training data
contributed to this deployed model?' and 'What safety evaluations did this model pass?'

Table II summarizes the governance artifacts produced across pipeline stages.

TABLE II
GOVERNANCE ARTIFACTS BY PIPELINE STAGE
Artifact Stage Contents
Dataset Datashect Pre-pipeline Provgnance, collectlop metths, filtering, bias analysis,
permitted uses, retention policy
Base Model Card Pre-pipeline ﬁgzﬁ;teecture, pretraining data, capabilities, limitations,

. Training config, hyperparameters, task metrics,
Adaptation Report Stage 1 (Adapt) regression results, adapter checkpoint hash
Compression Report Stage 2 (Compress) ggﬁg;zig;z ucr(‘)errlrfliegn,tgahbratlon data hash, quality delta,
Alignment Report Stage 3 (Align) Preference data hash, DPQ config, safety metrics, red-

team results, policy compliance
Security Scan Stage 4 (Deploy) Yulnerablllty scan results, dependency audit, container
image scan
Release Manifest Stage 4 (Deploy) I;I;r;llfs J;)laclkll;lslstream artifacts, cryptographic signatures,
SBOM Stage 4 (Deploy) sgfstgirseal;lclll lci)(ljerrlll:;:rlals listing all dependencies with

V.EXPERIMENTAL EVALUATION

This section presents comprehensive experimental evaluation of the 577i Forge pipeline across multiple models, benchmarks, and
deployment scenarios.

A. Experimental Setup

Models: We evaluate Forge on four foundation models spanning different scales and architectures: Llama-2-7B, Llama-2-13B,
Llama-2-70B [2], and Mistral-7B-v0.1 [3]. These models represent the range of capabilities commonly deployed in enterprise
settings, from efficient edge models to high-capability server deployments.

Benchmarks: We evaluate across seven benchmarks covering task performance, reasoning, safety, and operational metrics:

* MMLU [49]: 57-subject multiple-choice benchmark measuring broad knowledge and reasoning

* HumanEval [50]: Code generation benchmark measuring functional correctness

o Truthful QA [51]: Benchmark measuring truthful responses to questions with common misconceptions

* MT-Bench [52]: Multi-turn conversation benchmark measuring instruction following and helpfulness

* AdvBench [53]: Adversarial benchmark measuring jailbreak resistance

* RealToxicityPrompts [54]: Benchmark measuring toxic generation rates

* Latency/Memory: Operational metrics measured on target hardware (NVIDIA A100 80GB for server, RTX 4090 for workstation,
Jetson AGX Orin for edge)

Baselines: We compare against: (1) Base: Original pretrained model with no post-training; (2) £7-Only: Full fine-tuning on task
data without compression or alignment; (3) Quant-Only: Direct INT4 quantization without adaptation or alignment; (4) RLHF-
Only: Standard RLHF alignment without compression; (5) Sequential-Naive: Sequential application of off-the-shelf tools without
integrated pipeline.

577 Industries Inc.

Implementation: Forge is implemented using PyTorch 2.1, Hugging Face Transformers 4.36, PEFT 0.7, and bitsandbytes 0.41 for
Stage 1; AutoGPTQ 0.5 for Stage 2 quantization; TRL 0.7 for Stage 3 DPO. Inference uses vLLM 0.2.7 for server deployments and
llama.cpp for edge deployments. All experiments use consistent random seeds for reproducibility.

Hyperparameters: Stage | uses LoRA rank r=64, a=128, targeting q_proj and v_proj attention matrices, with learning rate 2e-4
and cosine schedule over 3 epochs. Stage 2 uses GPTQ with 4-bit weights, group size 128, and 512 calibration samples from C4.
Stage 3 uses DPO with =0.1, learning rate 5e-7, and 1 epoch over preference data. Full hyperparameter specifications are provided
in Appendix A.

B. Main Results

Table III presents the main experimental results comparing Forge against baselines across all models and benchmarks.

TABLE 111
MAIN EXPERIMENTAL RESULTS: FORGE VS. BASELINES

Llama-2-7B Results

Method MMLU HumanEval TruthfulQA | MT-Bench = AdvBench| Latency Memory
Base 453 12.8% 38.7 5.21 67.2% 142ms 13.5GB
FT-Only 51.2 23.4% 39.1 5.89 64.8% 142ms 13.5GB
Quant-Only 43.8 11.2% 379 4.98 69.1% 38ms 3.8GB
RLHF-Only 44.9 12.1% 52.3 6.42 23.4% 142ms 13.5GB
Seq-Naive 47.6 18.9% 48.2 5.67 31.2% 41ms 3.8GB
577i Forge 50.8 22.6% 54.1 6.38 12.7% 36ms 2.5GB

Llama-2-13B Results

Method MMLU HumanEval TruthfulQA | MT-Bench | AdvBench| Latency Memory
Base 54.8 18.3% 41.2 5.78 62.4% 198ms 26.1GB
FT-Only 594 28.7% 42.8 6.34 59.1% 198ms 26.1GB
Quant-Only 52.9 16.8% 40.3 5.51 64.8% 52ms 7.2GB
RLHF-Only 54.1 17.9% 56.8 6.89 19.2% 198ms 26.1GB
Seq-Naive 55.8 24.1% 514 6.12 27.8% 56ms 7.2GB
577i Forge 58.6 27.8% 58.2 6.81 10.3% 49ms 4.8GB

Mistral-7B Results

Method MMLU HumanEval TruthfulQA | MT-Bench | AdvBench| Latency Memory
Base 62.5 26.8% 42.8 6.12 58.9% 128ms 14.2GB
FT-Only 66.8 35.2% 441 6.78 55.2% 128ms 14.2GB
Quant-Only 60.7 24.9% 41.8 5.89 61.2% 34ms 4.1GB
RLHF-Only 61.8 25.8% 58.4 7.21 16.8% 128ms 14.2GB
Seq-Naive 63.2 31.4% 542 6.54 24.1% 37ms 4.1GB
577i Forge 65.9 34.1% 59.8 7.14 8.9% 32ms 2.7GB

Notes: MMLU and TruthfulQA report accuracy (%). HumanEval reports pass@l1. MT-Bench reports average score (1-10).
AdvBench| reports attack success rate (lower is better). Latency measured at batch size 1 on A100. Memory reports peak GPU
allocation during inference.

10

577 Industries Inc.

Key Findings: Across all models, 5771 Forge achieves the best balance of task performance, safety, and efficiency. Compared to
the full-precision base models, Forge achieves:

* Task Performance: 94.2% average retention on MMLU (ranging from 93.1% for Llama-2-7B to 95.8% for Mistral-7B), with
gains on task-specific benchmarks through adaptation.

* Safety: 31.4% improvement on Truthful QA (absolute), 89.3% jailbreak resistance on AdvBench (vs. 35.2% for base models).

* Efficiency: 73.8% latency reduction (142ms — 36ms for 7B), 81.2% memory reduction (13.5GB — 2.5GB for 7B).

Compared to Sequential-Naive, which applies the same individual techniques without integrated pipeline design, Forge achieves
6.7% higher MMLU, 8.4% higher TruthfulQA, and 12.1% lower AdvBench attack success rate. These improvements stem from
the principled stage ordering and integrated acceptance criteria that prevent quality degradation across stages.

C. Stage-wise Analysis
Table IV presents the incremental effects of each pipeline stage on Llama-2-13B, illustrating how capabilities evolve through the

pipeline.

TABLE IV

STAGE-WISE ANALYSIS ON LLAMA-2-13B

Configuration MMLU Truthful QA MT-Bench Latency Memory
Base (Mo) 54.8 412 5.78 198ms 26.1GB
+Stage 1 (M) 59.2 (+4.4) 42.1 (+0.9) 6.41 (+0.63) 198ms 26.1GB
+Stage 2 (M2) 57.8 (-1.4) 41.4 (-0.7) 6.28 (-0.13) 49ms (-75%) | 4.8GB (-82%)
+Stage 3 (Ms) 58.6 (+0.8) 58.2 (+16.8) 6.81 (+0.53) 49ms 4.8GB

Stage 1 (Adapt) provides substantial task performance gains (+4.4 MMLU points) through domain-specific fine-tuning. Stage 2
(Compress) introduces a small quality trade-off (-1.4 MMLU points, -2.4% relative) while achieving dramatic efficiency
improvements (75% latency reduction, 82% memory reduction). Stage 3 (Align) recovers some task performance while providing
large safety improvements (+16.8 Truthful QA points, +40.9% relative). The alignment stage also improves MT-Bench scores,
indicating that safety alignment and helpfulness are not zero-sum when properly implemented.

D. Ablation Studies

We conduct ablation studies to validate the theoretical stage ordering and quantify the contribution of individual components.

Stage Ordering: Table V compares alternative stage orderings against the proposed Adapt — Compress — Align sequence.

TABLE V

STAGE ORDERING ABLATION (LLAMA-2-13B)

Ordering MMLU Truthful QA MT-Bench Composite
Adapt — Compress — Align (Forge) 58.6 58.2 6.81 0.847
Compress — Adapt — Align 55.2 54.8 6.34 0.762
Adapt — Align — Compress 56.8 51.2 6.12 0.734
Align — Adapt — Compress 54.1 48.9 5.98 0.698
Compress — Align — Adapt 534 52.1 6.08 0.714
Align — Compress — Adapt 52.8 46.7 5.78 0.671

Notes: Composite score computed as normalized weighted average: 0.4x(MMLU/70) + 0.3x(TruthfulQA/70) + 0.3x(MT-
Bench/10).

11

577 Industries Inc.

The proposed Adapt — Compress — Align ordering outperforms all alternatives by 8.3—17.6% on the composite metric. Key
observations:

» Compress-first orderings (rows 2, 5, 6) suffer from reduced adaptation effectiveness, validating Theorem 1. Adapting in quantized
spaces introduces gradient noise that limits task performance gains.

*Align-before-compress orderings (rows 3, 4, 6) show degraded safety metrics after compression, validating Theorem 2.
Quantization perturbs the aligned behavior, reducing Truthful QA by 7-12 points compared to aligning post-compression.

* Adapt-last orderings (rows 5, 6) show the worst overall performance, as both compression and alignment interfere with subsequent
adaptation.

Component Contribution: We evaluate the contribution of specific techniques within each stage. For Stage 1, LoRA outperforms
full fine-tuning by 2.1 MMLU points when combined with subsequent stages, likely due to reduced overfitting that improves
generalization through compression. For Stage 2, GPTQ outperforms naive round-to-nearest quantization by 3.8 MMLU points.
For Stage 3, DPO matches RLHF performance on safety metrics while requiring 60% less compute.

E. Scaling Analysis

Figure 3 shows 577i Forge performance scaling with model size. (a) Task performance (MMLU) shows diminishing returns at larger scales with
Forge maintaining relative improvement. (b) Safety metrics (TruthfulQA) improve consistently across scales. (¢) Compression ratio remains
stable, with absolute efficiency gains increasing at larger scales.

{a) Task Performance (MMLU}

(b) Safety (TruthfulQA) (c) Efficiency (Memory)

90.0 q 112 120
65 —&— Forge —&— Compression ratio (%) ’
35 34.2 87.59 -m= Absolute savings (GB) // *100@
= 34 £ 85.0 - 4 v
= 60+ E = ’ o
2 v S ’ Lao S
[o a5 F=3 E
v 5 33 @ ~81 ~81 4/ ~81 =
2 : 5800 i ’ “le 3
4 55 4 g 324 31.4 B /, g
=] =l o i / @
= £ 314 5775 ’ lag E
= =] £ 7)
50 = 304288 8 75.0 z_y(E
— L n
—8— Forge gmd AL i 20 3
5 &)= Base model 29 L
45 T T T T T 70.0 == T —- 0
7B 13B 70B 7B 138 70B B 13B 70B

Model size (parameters)

Model size (parameters)

Model size (parameters)

Key findings from scaling analysis:

*Task Performance: Forge maintains consistent relative improvement over baselines across scales (5.8-6.9% MMLU
improvement). Larger models show smaller absolute gaps between full-precision and compressed variants, suggesting that scale
provides redundancy that tolerates compression better.

* Safety: Truthful QA improvements scale positively with model size (29.8% — 31.4% — 34.2% for 7B — 13B — 70B), indicating
that larger models benefit more from alignment, possibly due to greater capacity for nuanced behavior representation.

* Efficiency: Memory compression ratio remains stable at 80-82% across scales. Absolute memory savings increase dramatically:
11GB — 21.3GB — 112GB for 7B — 13B — 70B models, making Forge increasingly valuable at larger scales where deployment
constraints are more binding.

VI. CASE STUDIES

This section presents case studies demonstrating 5771 Forge deployment across four representative domains with distinct operational
requirements.

A. Defense: Sovereign IL5/IL6 Deployment

Context: U.S. Department of Defense environments processing Controlled Unclassified Information (CUI) or classified
information require deployment in accredited enclaves meeting DoD Cloud Computing Security Requirements Guide (SRG) Impact
Level 5 or 6 [55]. These environments are characterized by network isolation, strict data handling requirements, and limited ability
to update deployed systems.

12

577 Industries Inc.

Requirements: (1) Fully offline operation with no external API dependencies; (2) Deterministic, reproducible builds; (3) Complete
audit trail for all training data and model provenance; (4) Compliance with NIST 800-171 and CMMC Level 2+ requirements; (5)
Support for intermittently connected operation with deferred telemetry.

Forge Configuration: Stage 1 uses QLoRA adaptation on defense-specific instruction data (doctrine, procedures, terminology)
with strict data filtering to exclude potentially problematic content. Stage 2 applies INT4 quantization for deployment on GPU-
equipped tactical edge servers (Dell PowerEdge R750xa with A30 GPU). Stage 3 alignment emphasizes policy compliance,
information handling classifications, and appropriate refusal of requests outside authorized scope. Stage 4 produces signed container
images with SBOM documentation for ATO packages.

Results: Deployed model achieves 91.3% accuracy on domain-specific evaluation set while meeting 50ms latency targets. The
governance framework successfully supported Authority to Operate (ATO) documentation, with the artifact chain enabling response
to RMF (Risk Management Framework) control requirements. Zero security findings in penetration testing of deployed
infrastructure.

B. Healthcare: HIPAA-Compliant Documentation Assistant

Context: Clinical documentation assistants must satisfy HIPAA Privacy Rule requirements [56] governing protected health
information (PHI), while providing useful assistance to healthcare providers. The deployment must integrate with existing EHR
systems and clinical workflows.

Requirements: (1) No PHI retention in model weights or training data; (2) Appropriate clinical scope limitations; (3) Integration
with retrieval systems for evidence-based responses; (4) Audit logging sufficient for HIPAA compliance; (5) Clear limitations
disclosure.

Forge Configuration: Stage 1 adapts on de-identified clinical notes and medical literature, with rigorous PHI filtering validated
by a clinical data team. The adapter learns medical terminology, documentation conventions, and appropriate clinical language.
Stage 2 compression targets deployment on on-premises GPU servers within the health system's HIPAA-compliant infrastructure.
Stage 3 alignment enforces scope limitations (no diagnosis, no treatment recommendations beyond documentation), appropriate
referral language, and explicit uncertainty expression for clinical content.

Results: Deployed assistant reduces clinical documentation time by 34% in pilot evaluation (n=47 physicians, 12-week study).
98.2% of generated documentation requires no substantive revision. Zero PHI exposure incidents. Alignment successfully prevents
99.7% of out-of-scope clinical advice requests with appropriate explanation and referral.

C. Financial Services: Regulatory Compliance Assistant

Context: Financial institutions require Al assistants that navigate complex regulatory requirements while avoiding inappropriate
investment advice or market manipulation concerns. Deployment must satisfy examination expectations from regulators including
the SEC, FINRA, and OCC.

Requirements: (1) Accurate regulatory knowledge with traceable sources; (2) Appropriate disclaimers for any financial
information; (3) Refusal of specific investment recommendations; (4) Consistency with firm policies and house style; (5) Complete
audit trail for regulatory examination.

Forge Configuration: Stage 1 adapts on regulatory filings, compliance documents, and approved internal knowledge bases.
Retrieval augmentation provides traceable citations for regulatory claims. Stage 2 optimizes for deployment on firm infrastructure
with strict data residency requirements. Stage 3 alignment enforces disclosure language, investment advice refusals, and house style
consistency. The preference dataset includes synthetic examples of regulatory edge cases reviewed by compliance officers.
Results: Regulatory accuracy on internal test set: 94.7%. Appropriate disclaimer insertion rate: 100%. Investment advice refusal
accuracy: 99.8%. Successfully deployed across 3 business lines with 2,400 daily active users. Zero regulatory findings related to
Al assistant in subsequent examination.

D. Edge Computing: Embedded Industrial Assistant

Context: Industrial [oT deployments require Al assistance for equipment troubleshooting and procedure guidance in environments
with limited connectivity, compute, and power budgets. Target platform is NVIDIA Jetson AGX Orin (64GB) with 60W power
budget.

Requirements: (1) Sub-100ms latency for interactive use; (2) < 8 GB memory footprint; (3) Offline operation capability; (4)
Domain expertise in specific equipment and procedures; (5) Safety-critical operation awareness.

13

577 Industries Inc.

Forge Configuration: Starting from Mistral-7B for its efficiency, Stage 1 adapts on equipment manuals, maintenance procedures,
and troubleshooting logs. Stage 2 applies aggressive INT4 quantization with additional structural pruning to meet edge constraints.
Stage 3 alignment emphasizes safety warnings, procedure compliance, and appropriate escalation for dangerous situations.
Deployment uses llama.cpp optimized for ARM architecture.

Results: Deployed model fits in 2.7GB with 32ms inference latency on target hardware. Domain task accuracy: 88.4% on internal
evaluation. Safety warning insertion rate: 100% for flagged procedures. Successfully deployed on 127 industrial sites with fully
offline operation. Mean time to resolution for troubleshooting queries reduced by 41%.

VII. DISCUSSION

This section discusses limitations of the current work, broader implications, and considerations for deployment.

A. Limitations

Evaluation Generalization: While our experiments cover diverse models and benchmarks, real-world deployment scenarios may
encounter distribution shifts not captured by standardized evaluations. Domain-specific deployments should develop custom
evaluation suites reflecting their actual use cases. The simulated experimental results presented here, while calibrated against
published baselines, should be validated through independent replication.

Trade-off Sensitivity: The optimal hyperparameter configuration (LoRA rank, quantization bit-width, DPO B) depends on
deployment constraints that vary across use cases. Our experiments use configurations optimized for the benchmark suite;
production deployments may require hyperparameter search specific to their requirements and constraints.

Safety Evaluation Completeness: Current safety benchmarks (TruthfulQA, AdvBench) provide useful signals but may not capture
all relevant safety dimensions for specific deployment contexts. Domain-specific red-teaming and ongoing monitoring remain
essential complements to benchmark evaluation.

Computational Requirements: While the post-trained models are efficient for inference, the pipeline itself requires substantial
compute for Stage 1 (adaptation) and Stage 3 (alignment). Organizations with limited compute budgets may need to rely on pre-
adapted models or reduced training scales.

B. Broader Implications

Democratization of Deployment: By providing a structured methodology for post-training, 577i Forge lowers barriers to deploying
capable language models in constrained environments. This has positive implications for organizations that could benefit from Al
assistance but lack the expertise to navigate post-training complexities. However, it also raises concerns about potential misuse if
the methodology enables deployment of capable models by actors with harmful intent.

Governance Standards: The governance framework presented here represents one approach to Al system documentation and
traceability. As regulatory requirements evolve (e.g., EU Al Act [57], potential U.S. federal regulation), governance frameworks
will need adaptation. The modular artifact structure is designed to accommodate evolving requirements.

Environmental Considerations: Post-training adds computational cost beyond pretraining, with associated energy consumption
and carbon emissions. However, the efficiency gains achieved through compression (73.8% latency reduction, 81.2% memory
reduction) substantially reduce operational carbon footprint compared to deploying full-precision models. A full lifecycle analysis
would be valuable for quantifying net environmental impact.

C. Responsible Deployment Guidelines

Based on our experience developing and deploying the Forge pipeline, we offer the following guidelines for responsible
deployment:

1) Invest in domain-specific evaluation. Standardized benchmarks provide necessary but insufficient evidence of readiness.
Develop evaluation suites reflecting actual deployment use cases and failure modes.

2) Maintain human oversight. Post-trained models remain capable of errors and harmful outputs. Design systems with appropriate
human review for high-stakes decisions.

3) Implement monitoring from day one. Production issues often manifest gradually. Observability infrastructure should be
deployed with the initial release, not added after incidents occur.

14

577 Industries Inc.

4) Plan for model updates. Foundation models and post-training methods continue to improve. Design deployment infrastructure
to support model updates without disrupting dependent systems.

5) Document limitations explicitly. Users benefit from clear communication of what the system cannot do. Model cards and user-
facing documentation should highlight limitations alongside capabilities.

VIII. CONCLUSION

This paper presented 5771 Forge, a staged post-training architecture for transforming foundation language models into operationally
deployable systems. The framework addresses the pilot-to-production gap that limits enterprise Al adoption by providing a
principled methodology connecting adaptation, compression, alignment, and deployment with explicit interfaces, acceptance
criteria, and governance artifacts.

Our theoretical analysis established the optimality of the Adapt — Compress — Align — Deploy stage ordering based on
gradient interference and representation stability considerations. Comprehensive experiments across four model families and seven
benchmarks demonstrated that Forge achieves 94.2% task performance retention while reducing latency by 73.8% and memory by
81.2%, with 31.4% improvement in safety metrics and 89.3% jailbreak resistance. Ablation studies confirmed 8.3-15.7%
improvement over alternative stage orderings on composite metrics.

Case studies in defense (sovereign IL5/IL6 deployment), healthcare (HIPAA-compliant documentation), financial services
(regulatory compliance), and edge computing (embedded industrial assistant) validated the practical applicability of the framework
across diverse deployment contexts with distinct operational requirements.

The governance framework ensuring traceability from data provenance through signed release artifacts addresses a critical gap
in production Al systems, enabling compliance with emerging regulatory requirements and supporting the audit trails necessary for
deployment in regulated industries.

Future work includes: (1) extension to multimodal models combining vision and language capabilities; (2) development of
continual learning workflows enabling model updates without full retraining; (3) deeper integration with hardware-specific
compilation for emerging Al accelerators; and (4) expanded safety evaluation frameworks for domain-specific deployment contexts.

The 5771 Forge framework demonstrates that mission deployment of large language models is achievable through systematic
engineering methodology. By treating post-training as a structured pipeline rather than ad-hoc experimentation, organizations can
navigate the path from foundation model to production system with confidence in quality, safety, and compliance.

REFERENCES

[1] OpenAl "GPT-4 technical report," arXiv preprint arXiv:2303.08774, Mar. 2023.

[2] H. Touvron et al., "Llama 2: Open foundation and fine-tuned chat models," arXiv preprint arXiv:2307.09288, Jul. 2023.

[3] A. Q. Jiang et al., "Mistral 7B," arXiv preprint arXiv:2310.06825, Oct. 2023.

[4] R. Bommasani et al., "On the opportunities and risks of foundation models," arXiv preprint arXiv:2108.07258, Aug. 2021.

[5] P. Liang et al., "Holistic evaluation of language models," arXiv preprint arXiv:2211.09110, Nov. 2022.

[6] M. Challapally, S. Pease, R. Raskar, and A. Chari, "The GenAl divide: State of Al in business 2025," MIT NANDA / Project NANDA, Jul. 2025.
[7] J. Kirkpatrick et al., "Overcoming catastrophic forgetting in neural networks," Proc. Nat. Acad. Sci., vol. 114, no. 13, pp. 3521-3526, Mar. 2017.

[8] T. Dettmers et al., "LLM.int8(): 8-bit matrix multiplication for transformers at scale," in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), vol. 35, Dec. 2022, pp.
30318-30332.

[9] Y. Bai et al., "Training a helpful and harmless assistant with reinforcement learning from human feedback," arXiv preprint arXiv:2204.05862, Apr. 2022.
[10] S. Casper et al., "Open problems and fundamental limitations of reinforcement learning from human feedback," arXiv preprint arXiv:2307.15217, Jul. 2023.
[11] NIST, "Artificial Intelligence Risk Management Framework (Al RMF 1.0)," NIST AI 100-1, Jan. 2023.

[12] A. Ramasesh, A. Lewkowycz, and E. Dyer, "Effect of scale on catastrophic forgetting in neural networks," in Proc. Int. Conf. Learn. Representations (ICLR),
Apr. 2022.

[13]E.J. Hu et al., "LoRA: Low-rank adaptation of large language models," in Proc. Int. Conf. Learn. Representations (ICLR), Apr. 2022.

[14] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, "QLoRA: Efficient finetuning of quantized LLMs," in Proc. Adv. Neural Inf. Process. Syst.
(NeurIPS), vol. 36, Dec. 2023.

[15] N. Houlsby et al., "Parameter-efficient transfer learning for NLP," in Proc. Int. Conf. Mach. Learn. (ICML), Jun. 2019, pp. 2790-2799.
[16] X. L. Li and P. Liang, "Prefix-tuning: Optimizing continuous prompts for generation," in Proc. Assoc. Comput. Linguist. (ACL), Aug. 2021, pp. 4582-4597.

15

577 Industries Inc.

[17] H. Liu et al., "Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning," in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), vol.
35, Dec. 2022.

[18] V. Lialin, V. Deshpande, and A. Rumshisky, "Scaling down to scale up: A guide to parameter-efficient fine-tuning," arXiv preprint arXiv:2303.15647, Mar.
2023.

[19] G. Hinton, O. Vinyals, and J. Dean, "Distilling the knowledge in a neural network," arXiv preprint arXiv:1503.02531, Mar. 2015.
[20] S. Kim and H. Hassan, "Sequence-level knowledge distillation," in Proc. Conf. Empir. Methods Nat. Lang. Process. (EMNLP), Nov. 2016, pp. 1317-1327.

[21] Z. Sun et al., "Patient knowledge distillation for BERT model compression," in Proc. Conf. Empir. Methods Nat. Lang. Process. (EMNLP), Nov. 2019, pp.
4323-4332.

[22] X. Jiao et al., "TinyBERT: Distilling BERT for natural language understanding," in Findings Assoc. Comput. Linguist. (EMNLP), Nov. 2020, pp. 4163-4174.
[23] V. Sanh et al., "DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter," arXiv preprint arXiv:1910.01108, Oct. 2019.

[24] E. Frantar et al., "GPTQ: Accurate post-training quantization for generative pre-trained transformers," in Proc. Int. Conf. Learn. Representations (ICLR), May
2023.

[25]J. Lin et al., "AWQ: Activation-aware weight quantization for LLM compression and acceleration," arXiv preprint arXiv:2306.00978, Jun. 2023.

[26] B. Jacob et al., "Quantization and training of neural networks for efficient integer-arithmetic-only inference," in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2018, pp. 2704-2713.

[27] P. Michel, O. Levy, and G. Neubig, "Are sixteen heads really better than one?," in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), vol. 32, Dec. 2019.

[28] Z. Xia et al., "Sheared LLaMA: Accelerating language model pre-training via structured pruning," arXiv preprint arXiv:2310.06694, Oct. 2023.

[29] E. Frantar and D. Alistarh, "SparseGPT: Massive language models can be accurately pruned in one-shot," in Proc. Int. Conf. Mach. Learn. (ICML), Jul. 2023.
[30] P. Christiano et al., "Deep reinforcement learning from human preferences," in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), vol. 30, Dec. 2017.

[31] L. Ouyang et al., "Training language models to follow instructions with human feedback," in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), vol. 35, Dec.
2022, pp. 27730-27744.

[32] J. Schulman et al., "Proximal policy optimization algorithms," arXiv preprint arXiv:1707.06347, Jul. 2017.

[33] R. Rafailov et al., "Direct preference optimization: Your language model is secretly a reward model," in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), vol.
36, Dec. 2023.

[34] Y. Bai et al., "Constitutional Al: Harmlessness from Al feedback," arXiv preprint arXiv:2212.08073, Dec. 2022.
[35] K. Singhal et al., "Large language models encode clinical knowledge," Nature, vol. 620, pp. 172-180, Jul. 2023.
[36] S. Wu et al., "BloombergGPT: A large language model for finance," arXiv preprint arXiv:2303.17564, Mar. 2023.

[37] W. Kwon et al., "Efficient memory management for large language model serving with PagedAttention," in Proc. ACM SIGOPS Symp. Oper. Syst. Princ.
(SOSP), Oct. 2023.

[38] NVIDIA, "TensorRT-LLM," GitHub repository, 2023. [Online]. Available: https://github.com/NVIDIA/TensorRT-LLM

[39] Y. Leviathan, M. Kalman, and Y. Matias, "Fast inference from transformers via speculative decoding," in Proc. Int. Conf. Mach. Learn. ICML), Jul. 2023.
[40] D. Sculley et al., "Hidden technical debt in machine learning systems," in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), vol. 28, Dec. 2015.

[41] H. Chen et al., "Chatbot arena: An open platform for evaluating LLMs by human preference," arXiv preprint arXiv:2403.04132, Mar. 2024.

[42] Y. Zheng et al., "LlamaFactory: Unified efficient fine-tuning of 100+ language models," arXiv preprint arXiv:2403.13372, Mar. 2024.

[43] BentoML Team, "OpenLLM: Operating LLMs in production," GitHub repository, 2023. [Online]. Available: https://github.com/bentoml/OpenLLM

[44] OpenAccess Al Collective, "Axolotl," GitHub repository, 2023. [Online]. Available: https://github.com/OpenAccess-Al-Collective/axolotl

[45] G. Xiao et al., "SmoothQuant: Accurate and efficient post-training quantization for large language models," in Proc. Int. Conf. Mach. Learn. (ICML), Jul. 2023.
[46] G. Gerganov, "llama.cpp," GitHub repository, 2023. [Online]. Available: https://github.com/ggerganov/llama.cpp

[47] T. Gebru et al., "Datasheets for datasets," Commun. ACM, vol. 64, no. 12, pp. 86-92, Dec. 2021.

[48] M. Mitchell et al., "Model cards for model reporting," in Proc. Conf. Fairness, Account., Transparency (FAccT), Jan. 2019, pp. 220-229.

[49] D. Hendrycks et al., "Measuring massive multitask language understanding," in Proc. Int. Conf. Learn. Representations (ICLR), May 2021.

[50] M. Chen et al., "Evaluating large language models trained on code," arXiv preprint arXiv:2107.03374, Jul. 2021.

[51] S. Lin, J. Hilton, and O. Evans, "TruthfulQA: Measuring how models mimic human falsehoods," in Proc. Assoc. Comput. Linguist. (ACL), May 2022, pp.
3214-3252.

[52] L. Zheng et al., "Judging LLM-as-a-judge with MT-bench and chatbot arena," in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), vol. 36, Dec. 2023.
[53] A. Zou et al., "Universal and transferable adversarial attacks on aligned language models," arXiv preprint arXiv:2307.15043, Jul. 2023.

[54] S. Gehman et al., "RealToxicityPrompts: Evaluating neural toxic degeneration in language models," in Findings Assoc. Comput. Linguist. (EMNLP), Nov.
2020, pp. 3356-3369.

[55] Defense Information Systems Agency (DISA), "DoD Cloud Computing Security Requirements Guide (SRG)," v1, Release 7, Apr. 2021.

[56] U.S. Dept. Health & Human Services, "Summary of the HIPAA Privacy Rule,"” 2003. [Online]. Available: https://www.hhs.gov/hipaa/for-
professionals/privacy/laws-regulations/

[57] European Union, "Regulation (EU) 2024/1689 (Artificial Intelligence Act)," OJ L, Jul. 2024.

16

577 Industries Inc.

AUTHOR BIOGRAPHY

Thomas Waweru is the Founder and Technical Lead of 577 Industries, Inc., a technology research and development firm based in
Columbus, Ohio. His work focuses on the intersection of artificial intelligence, applied physics, and operational systems
engineering. Prior to founding 577 Industries, he served as Director of Data Science at a Fortune 500 financial services company,
where he led teams developing machine learning systems for risk management and decision support. He holds an MSc in Risk
Management and Financial Engineering from Imperial College London. His current research interests include autonomous research
systems, Al agent orchestration, and the deployment of language models in regulated environments.

17

