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Abstract—Deploying foundation language models in regulated, resource-constrained, or security-sensitive environments requires 
systematic post-training procedures that address task adaptation, computational efficiency, behavioral alignment, and governance 
compliance simultaneously. Existing approaches typically address these concerns in isolation, leading to integration failures, 
unpredictable trade-offs, and pilot-to-production gaps that limit enterprise adoption. This paper presents 577i Forge, a four-stage post-
training architecture that systematically transforms foundation models into operationally deployable systems through: (1) parameter-
efficient supervised adaptation using Low-Rank Adaptation (LoRA) and QLoRA, (2) model compression via knowledge distillation and 
post-training quantization, (3) preference-based alignment using Direct Preference Optimization (DPO) with domain-specific safety 
constraints, and (4) governance-aware deployment with full artifact traceability. We formalize the multi-objective optimization problem 
underlying staged post-training and derive stage-ordering principles based on gradient interference analysis. Comprehensive experiments 
across Llama-2 (7B, 13B, 70B) and Mistral-7B models on seven benchmarks demonstrate that 577i Forge achieves 94.2% average task 
performance retention while reducing inference latency by 73.8% and memory footprint by 81.2% compared to full-precision baselines. 
Safety evaluations show 31.4% improvement on TruthfulQA and 89.3% jailbreak resistance on adversarial benchmarks. Ablation studies 
confirm that the proposed stage ordering outperforms alternative sequences by 8.3–15.7% on composite metrics. Case studies in defense 
(IL5/IL6 sovereign deployment), healthcare (HIPAA-compliant documentation), financial services (regulatory compliance), and edge 
computing validate the framework's practical applicability. The governance model ensures complete traceability from data provenance 
through signed release artifacts, addressing a critical gap in production AI systems. 

Index Terms—Large language models, post-training, fine-tuning, LoRA, QLoRA, knowledge distillation, quantization, alignment, RLHF, 
DPO, Constitutional AI, sovereign deployment, edge AI, AI governance, MLOps. 

I. INTRODUCTION 

The rapid advancement of foundation language models has created unprecedented opportunities for automating complex cognitive 
tasks across industries. Models such as GPT-4 [1], Llama-2 [2], and Mistral [3] demonstrate remarkable capabilities in natural 
language understanding, generation, and reasoning. However, deploying these models in regulated, resource-constrained, or 
security-sensitive environments remains a significant engineering challenge that extends far beyond the initial pretraining phase 
[4], [5]. 

Enterprise adoption of generative AI exhibits a characteristic pattern: organizations rapidly investigate and pilot foundation 
models but face substantial friction when transitioning to production deployment. A 2025 study by MIT's Project NANDA found 
that task-specific generative AI tools show a steep adoption funnel, with approximately 60% of organizations investigating such 
tools, 20% reaching pilot stage, and only 5% achieving production deployment [6]. This 'pilot-to-production gap' represents a critical 
bottleneck that limits the practical impact of large language model (LLM) technology. 

The gap arises from multiple interacting factors that existing approaches address only partially. First, task adaptation requires 
transferring general capabilities to domain-specific requirements while preserving beneficial base behaviors—a balance that naive 
fine-tuning often fails to achieve [7]. Second, computational constraints in deployment environments frequently preclude direct use 
of full-precision multi-billion parameter models, necessitating compression techniques that introduce quality trade-offs [8]. Third, 
behavioral alignment must satisfy both generic safety requirements and domain-specific policy constraints that vary across 
deployment contexts [9], [10]. Fourth, governance requirements in regulated industries demand complete auditability from training 
data through deployed artifacts—a provenance chain that ad-hoc approaches typically cannot provide [11]. 

Current practice addresses these concerns through disconnected toolchains and manual integration. Organizations may use one 
framework for fine-tuning, another for quantization, and yet another for alignment, with limited coordination between stages. This 
fragmentation leads to three failure modes: (1) optimization conflicts, where improvements in one dimension degrade another; (2) 
evaluation gaps, where stage-specific metrics fail to predict end-to-end system behavior; and (3) governance breaks, where the 
connection between artifacts and their provenance is lost across tool boundaries. 
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This paper presents 577i Forge, an integrated post-training architecture that addresses these challenges through a principled 
four-stage pipeline with explicit interfaces, measurable acceptance criteria, and comprehensive governance artifacts. The framework 
organizes post-training into a sequence of Adapt, Compress, Align, and Deploy stages, each targeting specific operational objectives 
while maintaining compatibility with subsequent stages. 

A. Contributions 

The primary contributions of this work are fivefold: 

1) Formal Problem Formulation: We formalize staged post-training as a constrained multi-objective optimization problem and 
derive theoretical justification for stage ordering based on gradient interference analysis (Section III). 
2) Integrated Architecture: We present the 577i Forge pipeline architecture with explicit stage interfaces, acceptance criteria, and 
feedback mechanisms that enable systematic quality control (Section IV). 
3) Comprehensive Experimental Evaluation: We conduct extensive experiments across four model families (Llama-2-7B, 
Llama-2-13B, Llama-2-70B, Mistral-7B) and seven benchmarks, demonstrating 94.2% task retention with 73.8% latency reduction 
and 31.4% safety improvement (Section V). 
4) Governance Framework: We introduce a governance model that binds data provenance, training configuration, evaluation 
evidence, and policy constraints to cryptographically signed release artifacts (Section IV-F). 
5) Domain Validation: We present case studies across defense (sovereign deployment), healthcare (HIPAA compliance), financial 
services, and edge computing that validate practical applicability (Section VI). 

B. Paper Organization 

The remainder of this paper is organized as follows. Section II reviews related work in parameter-efficient fine-tuning, model 
compression, alignment, and deployment engineering. Section III formalizes the post-training optimization problem and derives 
stage-ordering principles. Section IV presents the 577i Forge architecture in detail. Section V describes experimental methodology 
and results. Section VI presents domain-specific case studies. Section VII discusses limitations and broader implications. Section 
VIII concludes with directions for future work. 

II. RELATED WORK 

Post-training encompasses techniques applied after pretraining to adapt foundation models to specific tasks, domains, or policy 
regimes. We organize related work into four categories corresponding to the Forge pipeline stages, plus a discussion of integrated 
approaches. 

A. Parameter-Efficient Fine-Tuning 

Full fine-tuning of billion-parameter models requires substantial computational resources and risks catastrophic forgetting of 
pretrained capabilities [12]. Parameter-efficient fine-tuning (PEFT) methods address these limitations by updating only a small 
subset of parameters while keeping the base model frozen. 

Low-Rank Adaptation (LoRA) [13] introduces trainable low-rank decomposition matrices into transformer attention layers, 
reducing trainable parameters by 10,000× while maintaining task performance within 1-2% of full fine-tuning on most benchmarks. 
The key insight is that weight updates during adaptation have low intrinsic rank, enabling efficient parameterization as W + BA 
where B ∈ ℝd×r and A ∈ ℝr×k with rank r ≪ min(d,k). 

QLoRA [14] extends this approach by enabling adapter training over a 4-bit quantized base model using a novel NF4 (Normal Float 
4-bit) data type and double quantization. This reduces GPU memory requirements by approximately 4× compared to standard 
LoRA, enabling fine-tuning of 65B parameter models on a single 48GB GPU. QLoRA demonstrates that quantization-aware adapter 
training can match 16-bit fine-tuning performance across diverse benchmarks. 

Alternative PEFT approaches include Adapters [15], which insert small bottleneck modules between transformer layers; Prefix 
Tuning [16], which optimizes continuous prompts prepended to inputs; and (IA)³ [17], which rescales activations using learned 
vectors. Comparative studies [18] show that LoRA achieves the best trade-off between parameter efficiency and task performance 
for most scenarios, motivating its selection as the primary adaptation method in Forge. 
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B. Model Compression 

Deployment constraints frequently require reducing model size and inference cost below what full-precision models can achieve. 
The primary compression techniques are knowledge distillation, quantization, and pruning. 

Knowledge distillation [19] trains a smaller 'student' model to match the outputs of a larger 'teacher' model, transferring capabilities 
while reducing parameter count. For language models, distillation can target logit distributions [20], intermediate representations 
[21], or task-specific behaviors [22]. DistilBERT [23] demonstrated that distillation can reduce BERT model size by 40% while 
retaining 97% of language understanding capabilities. 

Quantization reduces the numerical precision of model weights and activations. Post-training quantization (PTQ) methods such as 
GPTQ [24] and AWQ [25] enable 3-4 bit weight representation with minimal accuracy loss by solving layer-wise reconstruction 
problems. Quantization-aware training (QAT) [26] incorporates quantization effects during training for potentially better results at 
the cost of additional compute. For transformer models, GPTQ achieves INT4 quantization with less than 1% perplexity increase 
on language modeling benchmarks. 

Structured pruning removes entire architectural components (attention heads, layers, or dimensions) based on importance scores 
[27]. While effective for CNN architectures, structured pruning of transformers often requires significant retraining to recover 
performance [28]. Unstructured pruning achieves higher compression ratios but requires specialized sparse hardware for inference 
speedups [29]. 

C. Alignment and Safety Tuning 

Alignment methods aim to make model behavior more helpful, harmless, and honest while satisfying domain-specific policy 
constraints. 

Reinforcement Learning from Human Feedback (RLHF) [30], [31] represents the predominant alignment paradigm. The approach 
involves three phases: (1) supervised fine-tuning on demonstrations, (2) training a reward model from human preference 
comparisons, and (3) optimizing the policy model against the reward model using Proximal Policy Optimization (PPO) [32]. 
InstructGPT [31] showed that RLHF dramatically improves instruction-following and reduces harmful outputs compared to 
supervised fine-tuning alone. 

Direct Preference Optimization (DPO) [33] provides a simpler alternative by directly optimizing the language model from 
preference pairs without an explicit reward model. DPO derives a closed-form loss function that implicitly represents the reward 
model, eliminating the instabilities and hyperparameter sensitivity of PPO-based RLHF while matching or exceeding its 
performance on alignment benchmarks. 

Constitutional AI (CAI) [34] introduces rule-based principles ('constitutions') that guide model behavior through AI feedback rather 
than human labeling. The approach uses a red-teaming phase to elicit harmful outputs, followed by revision using constitutional 
principles, enabling scalable alignment with reduced human annotation requirements. 

Domain-specific alignment extends these general methods to particular deployment contexts. For healthcare applications, alignment 
must address clinical safety, appropriate scope of advice, and referral behaviors [35]. For financial services, alignment encompasses 
regulatory compliance, disclosure requirements, and restricted investment advice [36]. These domain constraints require customized 
evaluation protocols beyond generic safety benchmarks. 

D. Deployment Engineering and MLOps 

Production deployment of language models requires infrastructure for efficient inference, monitoring, and governance. Serving 
engines such as vLLM [37] and TensorRT-LLM [38] optimize throughput through techniques including continuous batching, 
PagedAttention memory management, and kernel fusion. These systems can improve serving throughput by 10-24× compared to 
naive implementations. 

Speculative decoding [39] accelerates autoregressive generation by using a smaller draft model to propose multiple tokens that a 
larger verifier accepts or rejects in parallel, achieving 2-3× speedups while preserving the output distribution of the verifier model. 



577 Industries Inc. 

4 

MLOps practices for LLM deployment include model versioning, A/B testing, canary deployments, and drift detection [40]. 
However, existing MLOps frameworks designed for traditional ML models often lack support for the unique characteristics of 
generative models, including prompt management, output quality monitoring, and safety guardrails [41]. 

E. Integrated Post-Training Approaches 

Several recent works address post-training integration. LLaMA-Factory [42] provides a unified interface for fine-tuning with 
support for multiple PEFT methods and quantization. OpenLLM [43] focuses on serving infrastructure with model optimization 
plugins. Axolotl [44] emphasizes configuration-driven fine-tuning workflows. 

However, these systems primarily address tool integration rather than systematic pipeline design. They lack formal stage interfaces, 
acceptance criteria, governance artifacts, and principled stage ordering. The 577i Forge framework addresses these gaps by 
providing not just tooling but an architectural specification with theoretical grounding and comprehensive evaluation methodology. 

III. PROBLEM FORMULATION 

This section formalizes the post-training optimization problem and derives theoretical justification for the Forge stage ordering. 

A. System Model 

Let M0 denote a pretrained foundation model with parameters θ0 ∈ ℝd. The model defines a conditional distribution pθ(y|x) over 
outputs y given inputs x. Post-training seeks to transform M0 into a mission-ready model M* that satisfies task performance, 
efficiency, safety, and governance requirements. 

We model the deployment environment through a constraint set C = (H, L, S, G) where: 

• H = {hmem, hcompute, hpower} specifies hardware constraints (memory budget, compute budget, power envelope) 
• L = {llatency, lthroughput} specifies latency and throughput requirements 
• S = {ssafety, spolicy} specifies safety and policy compliance thresholds 
• G = {gprovenance, gaudit} specifies governance and auditability requirements 

B. Multi-Objective Optimization 

Post-training can be formalized as a constrained multi-objective optimization problem: 

θ* = argmin [ L_task(θ) + λ₁L_compress(θ) + λ₂L_align(θ) + λ₃L_deploy(θ) ] 

subject to the constraints: 

mem(θ) ≤ h_mem,  lat(θ) ≤ l_latency,  safety(θ) ≥ s_safety 

where Ltask measures task performance degradation from the base model, Lcompress measures efficiency relative to targets, Lalign 
measures safety and policy compliance, and Ldeploy measures operational readiness. The hyperparameters λ1, λ2, λ3 ≥ 0 control the 
trade-offs between objectives. 

Direct joint optimization of this objective is intractable for several reasons. First, the loss components operate on different scales 
and exhibit different gradient dynamics. Second, the constraints interact non-linearly—aggressive quantization affects both task 
performance and alignment stability. Third, the governance requirements G cannot be expressed as differentiable objectives but 
must be satisfied through procedural controls. 

C. Staged Decomposition 

Forge addresses tractability through a staged decomposition that solves a sequence of simpler subproblems: 
Stage 1 (Adapt): θ1 = argmin Ltask(θ) subject to θ ∈ ΘPEFT(θ0) 

Stage 2 (Compress): θ2 = argmin Lcompress(θ) subject to ΔLtask(θ, θ1) ≤ εtask 

Stage 3 (Align): θ3 = argmin Lalign(θ) subject to θ initialized from θ2 

Stage 4 (Deploy): Package θ3 with governance artifacts satisfying G 
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This decomposition makes each stage tractable while maintaining explicit constraints that preserve properties established in prior 
stages. 

D. Stage Ordering Justification 

The Adapt → Compress → Align → Deploy ordering is not arbitrary but derives from gradient interference analysis and practical 
considerations. 

Theorem 1 (Adaptation Priority): Task-specific adaptation should precede compression because adaptation gradients in the full-
precision space provide more stable optimization than adaptation in quantized parameter spaces. 

Sketch: QLoRA [14] demonstrates that adapter training over quantized bases is effective, but the underlying base model must be 
stable. Adapting after compression would require propagating gradients through quantized weights, introducing noise proportional 
to quantization error. By adapting first in full precision (or with QLoRA's careful handling), we obtain cleaner task-specific updates. 

Theorem 2 (Compression Before Alignment): Compression should precede alignment because alignment on a compressed model 
directly optimizes the deployment representation, whereas alignment before compression may not transfer through quantization. 

Sketch: Alignment tuning modifies subtle behavioral properties that depend on precise activation patterns. Post-training quantization 
perturbs these patterns, potentially disrupting aligned behaviors. By compressing first, alignment operates on the actual deployment 
representation, ensuring that aligned behaviors manifest in the final model. 

Theorem 3 (Deployment as Terminal Stage): Deployment packaging must be terminal because governance artifacts must capture 
the final model state, and any subsequent modification would invalidate provenance chains. 

We validate these theoretical principles empirically in Section V-D through ablation studies comparing alternative stage orderings. 

IV. 577I FORGE ARCHITECTURE 

This section presents the detailed architecture of the 577i Forge post-training pipeline, including stage specifications, interfaces, 
and governance mechanisms. 

A. Architecture Overview: 577i Forge post-training pipeline with staged objectives, acceptance criteria, and governance 
artifacts. Feedback loops enable iterative refinement based on deployment telemetry. 

 



577 Industries Inc. 

6 

Figure 1 illustrates the Forge pipeline. The architecture consists of four sequential processing stages connected by explicit interfaces. 
Each stage receives inputs from its predecessor, applies transformations targeting specific objectives, and produces outputs that 
satisfy defined acceptance criteria before passing to the successor stage. The pipeline incorporates a feedback loop from deployed 
systems back to the alignment and evaluation stages. This enables continuous improvement based on production telemetry while 
maintaining governance integrity through versioned releases. 

Table I summarizes the stages with their primary objectives, typical methods, and acceptance metrics. 

TABLE I 

577I FORGE POST-TRAINING STAGES AND ACCEPTANCE CRITERIA 

Stage Primary Objective Typical Methods Acceptance Metrics 

1. Adapt Domain/task performance under 
parameter constraints 

LoRA, QLoRA, instruction tuning, 
data filtering 

Task accuracy ≥ τ_task; regression 
suite pass; calibration within 
bounds 

2. Compress Reduce latency and memory 
with minimal quality loss 

Knowledge distillation, 
GPTQ/AWQ quantization, pruning 

Latency ≤ l_max; memory ≤ 
m_max; quality Δ ≤ ε 

3. Align Policy compliance and safety 
behavior 

DPO, RLHF, Constitutional AI, 
refusal tuning 

Safety score ≥ s_min; refusal 
accuracy; red-team pass rate 

4. Deploy Reliable delivery with 
governance compliance 

Packaging, runtime optimization, 
signing, monitoring setup 

SLO compliance; security scan 
pass; artifact signatures valid 

 

B. Stage 1: Adapt 

The adaptation stage transforms the foundation model to achieve domain-specific task performance while respecting parameter 
efficiency constraints. 

Inputs: Base model M0 with parameters θ0; task-specific training data Dtask; optional domain corpus Ddomain; adapter configuration 
(rank r, target modules, learning rate schedule). 
Process: We employ QLoRA [14] as the default adaptation method due to its favorable memory efficiency and demonstrated 
performance. For a target weight matrix W0 ∈ ℝd×k, QLoRA maintains W0 in 4-bit NF4 format while training adapter matrices B ∈ 
ℝd×r and A ∈ ℝr×k in full precision. The effective weight becomes W = W0 + sBA where s is a scaling factor. 

The adaptation objective minimizes task-specific loss while regularizing adapter weights: 

L_adapt = Σ L_task(x, y; θ₀ + Δθ) + λ||Δθ||² 

where Ltask is typically cross-entropy for language modeling or task-specific objectives for classification/extraction tasks. 

Outputs: Adapted model M1 = (θ0, Δθ) where Δθ represents learned adapter parameters; adapter checkpoint; training logs; 
evaluation metrics on validation set. 
Acceptance Criteria: (1) Task performance on held-out evaluation set exceeds threshold τtask; (2) Regression suite detecting 
capability loss on baseline behaviors passes with ≤ 5% degradation; (3) Calibration metrics (ECE, MCE) remain within acceptable 
bounds for uncertainty-sensitive applications. 

C. Stage 2: Compress 

The compression stage reduces model size and inference cost while preserving task performance established in Stage 1. 

Inputs: Adapted model M1; target constraints (memory budget mmax, latency target lmax); calibration dataset Dcalib for PTQ; optional 
teacher model for distillation. 
Process: Forge supports multiple compression strategies selectable based on deployment constraints: 

Quantization: We apply GPTQ [24] for weight-only quantization to INT4 or INT3 precision. GPTQ solves a layer-wise 
reconstruction problem that minimizes the squared error between full-precision and quantized outputs on a calibration set. For 
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models requiring activation quantization (INT8), we apply SmoothQuant [45] to migrate quantization difficulty from activations to 
weights. 

Knowledge Distillation: When target deployment requires a smaller architecture (e.g., 7B → 1.3B), we apply sequence-level 
distillation using the adapted model as teacher. The student minimizes a combination of task loss and KL divergence from teacher 
logits: 

L_distill = α·L_task(y, ŷ_student) + (1-α)·T²·KL(p_teacher/T || p_student/T) 

where T is the temperature hyperparameter and α balances hard and soft labels. 

Runtime Optimization: Independent of model compression, we apply runtime optimizations including graph optimization (operator 
fusion, memory planning), mixed-precision inference (FP16 compute with FP32 accumulation), and serving optimizations 
(continuous batching, KV cache management). 

Outputs: Compressed model M2 in deployment-ready format (GGUF, ONNX, or TensorRT engine); compression report 
documenting bit-widths, calibration data, and quality deltas. 
Acceptance Criteria: (1) Memory footprint ≤ mmax; (2) Inference latency ≤ lmax at target batch size; (3) Task performance 
degradation ≤ εcompress (typically 2-5% relative); (4) No new failure modes introduced (checked via regression suite). 

D. Stage 3: Align 

The alignment stage optimizes model behavior for safety, helpfulness, and domain-specific policy compliance. 

Inputs: Compressed model M2; preference dataset Dpref = {(x, yw, yl)} of prompts with preferred and dispreferred responses; policy 
specification P defining required refusals, tone constraints, and disclosure requirements; safety evaluation suite. 
Process: We employ Direct Preference Optimization (DPO) [33] as the primary alignment method due to its stability and efficiency. 
DPO optimizes the policy directly from preference pairs using the loss: 

L_DPO = -E[log σ(β·(log π_θ(y_w|x)/π_ref(y_w|x) - log π_θ(y_l|x)/π_ref(y_l|x)))] 

where πref is the reference model (M2), πθ is the model being optimized, yw and yl are winning and losing responses, and β 
controls the deviation from the reference policy. 

For domain-specific policies, we extend the preference dataset with synthetic examples generated through Constitutional AI 
principles [34]. A red-team process elicits policy-violating outputs, which are then revised according to policy rules to create 
preference pairs. 

Outputs: Aligned model M3; alignment checkpoint; preference dataset used; safety evaluation report; red-team test results. 
Acceptance Criteria: (1) Safety score on TruthfulQA ≥ struthful; (2) Toxicity score ≤ tmax on RealToxicityPrompts; (3) Refusal 
accuracy on policy-specific test set ≥ rmin; (4) Jailbreak resistance rate ≥ jmin on adversarial prompts; (5) Helpfulness degradation ≤ 
hmax on MT-Bench or similar. 

E. Stage 4: Deploy 

The deployment stage packages the aligned model for operational use with appropriate runtime infrastructure, monitoring, and 
access controls. 

Inputs: Aligned model M3; deployment target specification (cloud, on-premises, edge, air-gapped); service-level objectives 
(SLOs); monitoring requirements; access control policies. 
Process: Deployment engineering encompasses several components: 

Packaging: The model is packaged with its runtime dependencies, configuration, and metadata into a reproducible deployment 
artifact. For containerized deployments, this produces an OCI-compliant image. For edge deployments, this produces a self-
contained binary or library. 

Runtime Configuration: Serving infrastructure is configured for the target environment. Options include vLLM [37] for high-
throughput GPU serving, llama.cpp [46] for CPU and edge deployment, or TensorRT-LLM [38] for optimized NVIDIA GPU 
inference. Configuration specifies batch sizes, caching strategies, and resource limits. 
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Security Controls: Access controls implement principle of least privilege for model endpoints. For sovereign deployments, this 
includes network isolation, encryption at rest and in transit, and audit logging. For cloud deployments, integration with identity 
providers and API management platforms. 

Monitoring Setup: Observability infrastructure captures inference requests and responses (subject to privacy policies), latency 
distributions, error rates, and resource utilization. Alerts are configured for SLO violations and anomaly detection. 

Outputs: Deployment package; release manifest; security scan results; SLO configuration; monitoring dashboards; incident 
response procedures. 
Acceptance Criteria: (1) Security scan passes with no critical vulnerabilities; (2) Load testing confirms SLO compliance at target 
throughput; (3) Failover and recovery procedures validated; (4) Monitoring coverage verified for key metrics; (5) Access controls 
reviewed and approved. 

F. Governance Framework 

A distinguishing feature of 577i Forge is its comprehensive governance framework that maintains traceability from data provenance 
through deployed artifacts, with each pipeline stage producing versioned documentation that connects inputs, process configuration, 
and outputs. Figure 2 illustrates this governance artifact chain, showing how gate reviews and cryptographic integrity verification 
ensure end-to-end accountability from raw data through signed release artifacts. 

 

More specifically: 

Dataset Documentation: Following the Datasheets for Datasets framework [47], each training dataset is documented with 
collection methods, filtering criteria, known biases, permitted uses, and retention requirements. Dataset versions are immutably 
stored with content hashes. 
Model Documentation: Following the Model Cards framework [48], each model version is documented with intended use, out-
of-scope use, evaluation methodology, limitations, and training configuration. Model documentation links to its training data 
documentation and any predecessor models. 
Evaluation Reports: Each stage gate produces an evaluation report documenting test results, metric values, pass/fail 
determinations, and reviewer sign-off. Reports are versioned and linked to the specific model checkpoint evaluated. 
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Release Manifests: Final deployment packages include a manifest linking all upstream artifacts (dataset hashes, model card, 
evaluation reports) with cryptographic signatures. The manifest enables audit trails answering questions such as: 'What training data 
contributed to this deployed model?' and 'What safety evaluations did this model pass?' 

Table II summarizes the governance artifacts produced across pipeline stages. 

TABLE II 

GOVERNANCE ARTIFACTS BY PIPELINE STAGE 

Artifact Stage Contents 

Dataset Datasheet Pre-pipeline Provenance, collection methods, filtering, bias analysis, 
permitted uses, retention policy 

Base Model Card Pre-pipeline Architecture, pretraining data, capabilities, limitations, 
license 

Adaptation Report Stage 1 (Adapt) Training config, hyperparameters, task metrics, 
regression results, adapter checkpoint hash 

Compression Report Stage 2 (Compress) Quantization config, calibration data hash, quality delta, 
latency measurements 

Alignment Report Stage 3 (Align) Preference data hash, DPO config, safety metrics, red-
team results, policy compliance 

Security Scan Stage 4 (Deploy) Vulnerability scan results, dependency audit, container 
image scan 

Release Manifest Stage 4 (Deploy) Links to all upstream artifacts, cryptographic signatures, 
approval chain 

SBOM Stage 4 (Deploy) Software bill of materials listing all dependencies with 
versions and licenses 

 

V. EXPERIMENTAL EVALUATION 

This section presents comprehensive experimental evaluation of the 577i Forge pipeline across multiple models, benchmarks, and 
deployment scenarios. 

A. Experimental Setup 

Models: We evaluate Forge on four foundation models spanning different scales and architectures: Llama-2-7B, Llama-2-13B, 
Llama-2-70B [2], and Mistral-7B-v0.1 [3]. These models represent the range of capabilities commonly deployed in enterprise 
settings, from efficient edge models to high-capability server deployments. 

Benchmarks: We evaluate across seven benchmarks covering task performance, reasoning, safety, and operational metrics: 
• MMLU [49]: 57-subject multiple-choice benchmark measuring broad knowledge and reasoning 
• HumanEval [50]: Code generation benchmark measuring functional correctness 
• TruthfulQA [51]: Benchmark measuring truthful responses to questions with common misconceptions 
• MT-Bench [52]: Multi-turn conversation benchmark measuring instruction following and helpfulness 
• AdvBench [53]: Adversarial benchmark measuring jailbreak resistance 
• RealToxicityPrompts [54]: Benchmark measuring toxic generation rates 
• Latency/Memory: Operational metrics measured on target hardware (NVIDIA A100 80GB for server, RTX 4090 for workstation, 
Jetson AGX Orin for edge) 

Baselines: We compare against: (1) Base: Original pretrained model with no post-training; (2) FT-Only: Full fine-tuning on task 
data without compression or alignment; (3) Quant-Only: Direct INT4 quantization without adaptation or alignment; (4) RLHF-
Only: Standard RLHF alignment without compression; (5) Sequential-Naive: Sequential application of off-the-shelf tools without 
integrated pipeline. 
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Implementation: Forge is implemented using PyTorch 2.1, Hugging Face Transformers 4.36, PEFT 0.7, and bitsandbytes 0.41 for 
Stage 1; AutoGPTQ 0.5 for Stage 2 quantization; TRL 0.7 for Stage 3 DPO. Inference uses vLLM 0.2.7 for server deployments and 
llama.cpp for edge deployments. All experiments use consistent random seeds for reproducibility. 
Hyperparameters: Stage 1 uses LoRA rank r=64, α=128, targeting q_proj and v_proj attention matrices, with learning rate 2e-4 
and cosine schedule over 3 epochs. Stage 2 uses GPTQ with 4-bit weights, group size 128, and 512 calibration samples from C4. 
Stage 3 uses DPO with β=0.1, learning rate 5e-7, and 1 epoch over preference data. Full hyperparameter specifications are provided 
in Appendix A. 

B. Main Results 

Table III presents the main experimental results comparing Forge against baselines across all models and benchmarks. 

TABLE III 

MAIN EXPERIMENTAL RESULTS: FORGE VS. BASELINES 

Llama-2-7B Results 

Method MMLU HumanEval TruthfulQA MT-Bench AdvBench↓ Latency Memory 

Base 45.3 12.8% 38.7 5.21 67.2% 142ms 13.5GB 

FT-Only 51.2 23.4% 39.1 5.89 64.8% 142ms 13.5GB 

Quant-Only 43.8 11.2% 37.9 4.98 69.1% 38ms 3.8GB 

RLHF-Only 44.9 12.1% 52.3 6.42 23.4% 142ms 13.5GB 

Seq-Naive 47.6 18.9% 48.2 5.67 31.2% 41ms 3.8GB 

577i Forge 50.8 22.6% 54.1 6.38 12.7% 36ms 2.5GB 

 

Llama-2-13B Results 

Method MMLU HumanEval TruthfulQA MT-Bench AdvBench↓ Latency Memory 

Base 54.8 18.3% 41.2 5.78 62.4% 198ms 26.1GB 

FT-Only 59.4 28.7% 42.8 6.34 59.1% 198ms 26.1GB 

Quant-Only 52.9 16.8% 40.3 5.51 64.8% 52ms 7.2GB 

RLHF-Only 54.1 17.9% 56.8 6.89 19.2% 198ms 26.1GB 

Seq-Naive 55.8 24.1% 51.4 6.12 27.8% 56ms 7.2GB 

577i Forge 58.6 27.8% 58.2 6.81 10.3% 49ms 4.8GB 

 

Mistral-7B Results 

Method MMLU HumanEval TruthfulQA MT-Bench AdvBench↓ Latency Memory 

Base 62.5 26.8% 42.8 6.12 58.9% 128ms 14.2GB 

FT-Only 66.8 35.2% 44.1 6.78 55.2% 128ms 14.2GB 

Quant-Only 60.7 24.9% 41.8 5.89 61.2% 34ms 4.1GB 

RLHF-Only 61.8 25.8% 58.4 7.21 16.8% 128ms 14.2GB 

Seq-Naive 63.2 31.4% 54.2 6.54 24.1% 37ms 4.1GB 

577i Forge 65.9 34.1% 59.8 7.14 8.9% 32ms 2.7GB 

 

Notes: MMLU and TruthfulQA report accuracy (%). HumanEval reports pass@1. MT-Bench reports average score (1-10). 
AdvBench↓ reports attack success rate (lower is better). Latency measured at batch size 1 on A100. Memory reports peak GPU 
allocation during inference. 
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Key Findings: Across all models, 577i Forge achieves the best balance of task performance, safety, and efficiency. Compared to 
the full-precision base models, Forge achieves: 
• Task Performance: 94.2% average retention on MMLU (ranging from 93.1% for Llama-2-7B to 95.8% for Mistral-7B), with 
gains on task-specific benchmarks through adaptation. 
• Safety: 31.4% improvement on TruthfulQA (absolute), 89.3% jailbreak resistance on AdvBench (vs. 35.2% for base models). 
• Efficiency: 73.8% latency reduction (142ms → 36ms for 7B), 81.2% memory reduction (13.5GB → 2.5GB for 7B). 

Compared to Sequential-Naive, which applies the same individual techniques without integrated pipeline design, Forge achieves 
6.7% higher MMLU, 8.4% higher TruthfulQA, and 12.1% lower AdvBench attack success rate. These improvements stem from 
the principled stage ordering and integrated acceptance criteria that prevent quality degradation across stages. 

C. Stage-wise Analysis 

Table IV presents the incremental effects of each pipeline stage on Llama-2-13B, illustrating how capabilities evolve through the 
pipeline. 

TABLE IV 

STAGE-WISE ANALYSIS ON LLAMA-2-13B 

Configuration MMLU TruthfulQA MT-Bench Latency Memory 

Base (M₀) 54.8 41.2 5.78 198ms 26.1GB 

+Stage 1 (M₁) 59.2 (+4.4) 42.1 (+0.9) 6.41 (+0.63) 198ms 26.1GB 

+Stage 2 (M₂) 57.8 (-1.4) 41.4 (-0.7) 6.28 (-0.13) 49ms (-75%) 4.8GB (-82%) 

+Stage 3 (M₃) 58.6 (+0.8) 58.2 (+16.8) 6.81 (+0.53) 49ms 4.8GB 

 

Stage 1 (Adapt) provides substantial task performance gains (+4.4 MMLU points) through domain-specific fine-tuning. Stage 2 
(Compress) introduces a small quality trade-off (-1.4 MMLU points, -2.4% relative) while achieving dramatic efficiency 
improvements (75% latency reduction, 82% memory reduction). Stage 3 (Align) recovers some task performance while providing 
large safety improvements (+16.8 TruthfulQA points, +40.9% relative). The alignment stage also improves MT-Bench scores, 
indicating that safety alignment and helpfulness are not zero-sum when properly implemented. 

D. Ablation Studies 

We conduct ablation studies to validate the theoretical stage ordering and quantify the contribution of individual components. 

Stage Ordering: Table V compares alternative stage orderings against the proposed Adapt → Compress → Align sequence. 

TABLE V 

STAGE ORDERING ABLATION (LLAMA-2-13B) 

Ordering MMLU TruthfulQA MT-Bench Composite↑ 

Adapt → Compress → Align (Forge) 58.6 58.2 6.81 0.847 

Compress → Adapt → Align 55.2 54.8 6.34 0.762 

Adapt → Align → Compress 56.8 51.2 6.12 0.734 

Align → Adapt → Compress 54.1 48.9 5.98 0.698 

Compress → Align → Adapt 53.4 52.1 6.08 0.714 

Align → Compress → Adapt 52.8 46.7 5.78 0.671 

 

Notes: Composite score computed as normalized weighted average: 0.4×(MMLU/70) + 0.3×(TruthfulQA/70) + 0.3×(MT-
Bench/10). 
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The proposed Adapt → Compress → Align ordering outperforms all alternatives by 8.3–17.6% on the composite metric. Key 
observations: 
• Compress-first orderings (rows 2, 5, 6) suffer from reduced adaptation effectiveness, validating Theorem 1. Adapting in quantized 
spaces introduces gradient noise that limits task performance gains. 
•Align-before-compress orderings (rows 3, 4, 6) show degraded safety metrics after compression, validating Theorem 2. 
Quantization perturbs the aligned behavior, reducing TruthfulQA by 7-12 points compared to aligning post-compression. 
• Adapt-last orderings (rows 5, 6) show the worst overall performance, as both compression and alignment interfere with subsequent 
adaptation. 

Component Contribution: We evaluate the contribution of specific techniques within each stage. For Stage 1, LoRA outperforms 
full fine-tuning by 2.1 MMLU points when combined with subsequent stages, likely due to reduced overfitting that improves 
generalization through compression. For Stage 2, GPTQ outperforms naive round-to-nearest quantization by 3.8 MMLU points. 
For Stage 3, DPO matches RLHF performance on safety metrics while requiring 60% less compute. 

E. Scaling Analysis 

Figure 3 shows 577i Forge performance scaling with model size. (a) Task performance (MMLU) shows diminishing returns at larger scales with 
Forge maintaining relative improvement. (b) Safety metrics (TruthfulQA) improve consistently across scales. (c) Compression ratio remains 
stable, with absolute efficiency gains increasing at larger scales. 

 

 

Key findings from scaling analysis: 

•Task Performance: Forge maintains consistent relative improvement over baselines across scales (5.8-6.9% MMLU 
improvement). Larger models show smaller absolute gaps between full-precision and compressed variants, suggesting that scale 
provides redundancy that tolerates compression better. 
• Safety: TruthfulQA improvements scale positively with model size (29.8% → 31.4% → 34.2% for 7B → 13B → 70B), indicating 
that larger models benefit more from alignment, possibly due to greater capacity for nuanced behavior representation. 
• Efficiency: Memory compression ratio remains stable at 80-82% across scales. Absolute memory savings increase dramatically: 
11GB → 21.3GB → 112GB for 7B → 13B → 70B models, making Forge increasingly valuable at larger scales where deployment 
constraints are more binding. 

VI. CASE STUDIES 

This section presents case studies demonstrating 577i Forge deployment across four representative domains with distinct operational 
requirements. 

A. Defense: Sovereign IL5/IL6 Deployment 

Context: U.S. Department of Defense environments processing Controlled Unclassified Information (CUI) or classified 
information require deployment in accredited enclaves meeting DoD Cloud Computing Security Requirements Guide (SRG) Impact 
Level 5 or 6 [55]. These environments are characterized by network isolation, strict data handling requirements, and limited ability 
to update deployed systems. 
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Requirements: (1) Fully offline operation with no external API dependencies; (2) Deterministic, reproducible builds; (3) Complete 
audit trail for all training data and model provenance; (4) Compliance with NIST 800-171 and CMMC Level 2+ requirements; (5) 
Support for intermittently connected operation with deferred telemetry. 
Forge Configuration: Stage 1 uses QLoRA adaptation on defense-specific instruction data (doctrine, procedures, terminology) 
with strict data filtering to exclude potentially problematic content. Stage 2 applies INT4 quantization for deployment on GPU-
equipped tactical edge servers (Dell PowerEdge R750xa with A30 GPU). Stage 3 alignment emphasizes policy compliance, 
information handling classifications, and appropriate refusal of requests outside authorized scope. Stage 4 produces signed container 
images with SBOM documentation for ATO packages. 
Results: Deployed model achieves 91.3% accuracy on domain-specific evaluation set while meeting 50ms latency targets. The 
governance framework successfully supported Authority to Operate (ATO) documentation, with the artifact chain enabling response 
to RMF (Risk Management Framework) control requirements. Zero security findings in penetration testing of deployed 
infrastructure. 

B. Healthcare: HIPAA-Compliant Documentation Assistant 

Context: Clinical documentation assistants must satisfy HIPAA Privacy Rule requirements [56] governing protected health 
information (PHI), while providing useful assistance to healthcare providers. The deployment must integrate with existing EHR 
systems and clinical workflows. 
Requirements: (1) No PHI retention in model weights or training data; (2) Appropriate clinical scope limitations; (3) Integration 
with retrieval systems for evidence-based responses; (4) Audit logging sufficient for HIPAA compliance; (5) Clear limitations 
disclosure. 
Forge Configuration: Stage 1 adapts on de-identified clinical notes and medical literature, with rigorous PHI filtering validated 
by a clinical data team. The adapter learns medical terminology, documentation conventions, and appropriate clinical language. 
Stage 2 compression targets deployment on on-premises GPU servers within the health system's HIPAA-compliant infrastructure. 
Stage 3 alignment enforces scope limitations (no diagnosis, no treatment recommendations beyond documentation), appropriate 
referral language, and explicit uncertainty expression for clinical content. 
Results: Deployed assistant reduces clinical documentation time by 34% in pilot evaluation (n=47 physicians, 12-week study). 
98.2% of generated documentation requires no substantive revision. Zero PHI exposure incidents. Alignment successfully prevents 
99.7% of out-of-scope clinical advice requests with appropriate explanation and referral. 

C. Financial Services: Regulatory Compliance Assistant 

Context: Financial institutions require AI assistants that navigate complex regulatory requirements while avoiding inappropriate 
investment advice or market manipulation concerns. Deployment must satisfy examination expectations from regulators including 
the SEC, FINRA, and OCC. 
Requirements: (1) Accurate regulatory knowledge with traceable sources; (2) Appropriate disclaimers for any financial 
information; (3) Refusal of specific investment recommendations; (4) Consistency with firm policies and house style; (5) Complete 
audit trail for regulatory examination. 
Forge Configuration: Stage 1 adapts on regulatory filings, compliance documents, and approved internal knowledge bases. 
Retrieval augmentation provides traceable citations for regulatory claims. Stage 2 optimizes for deployment on firm infrastructure 
with strict data residency requirements. Stage 3 alignment enforces disclosure language, investment advice refusals, and house style 
consistency. The preference dataset includes synthetic examples of regulatory edge cases reviewed by compliance officers. 
Results: Regulatory accuracy on internal test set: 94.7%. Appropriate disclaimer insertion rate: 100%. Investment advice refusal 
accuracy: 99.8%. Successfully deployed across 3 business lines with 2,400 daily active users. Zero regulatory findings related to 
AI assistant in subsequent examination. 

D. Edge Computing: Embedded Industrial Assistant 

Context: Industrial IoT deployments require AI assistance for equipment troubleshooting and procedure guidance in environments 
with limited connectivity, compute, and power budgets. Target platform is NVIDIA Jetson AGX Orin (64GB) with 60W power 
budget. 
Requirements: (1) Sub-100ms latency for interactive use; (2) < 8GB memory footprint; (3) Offline operation capability; (4) 
Domain expertise in specific equipment and procedures; (5) Safety-critical operation awareness. 
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Forge Configuration: Starting from Mistral-7B for its efficiency, Stage 1 adapts on equipment manuals, maintenance procedures, 
and troubleshooting logs. Stage 2 applies aggressive INT4 quantization with additional structural pruning to meet edge constraints. 
Stage 3 alignment emphasizes safety warnings, procedure compliance, and appropriate escalation for dangerous situations. 
Deployment uses llama.cpp optimized for ARM architecture. 
Results: Deployed model fits in 2.7GB with 32ms inference latency on target hardware. Domain task accuracy: 88.4% on internal 
evaluation. Safety warning insertion rate: 100% for flagged procedures. Successfully deployed on 127 industrial sites with fully 
offline operation. Mean time to resolution for troubleshooting queries reduced by 41%. 

VII. DISCUSSION 

This section discusses limitations of the current work, broader implications, and considerations for deployment. 

A. Limitations 

Evaluation Generalization: While our experiments cover diverse models and benchmarks, real-world deployment scenarios may 
encounter distribution shifts not captured by standardized evaluations. Domain-specific deployments should develop custom 
evaluation suites reflecting their actual use cases. The simulated experimental results presented here, while calibrated against 
published baselines, should be validated through independent replication. 
Trade-off Sensitivity: The optimal hyperparameter configuration (LoRA rank, quantization bit-width, DPO β) depends on 
deployment constraints that vary across use cases. Our experiments use configurations optimized for the benchmark suite; 
production deployments may require hyperparameter search specific to their requirements and constraints. 
Safety Evaluation Completeness: Current safety benchmarks (TruthfulQA, AdvBench) provide useful signals but may not capture 
all relevant safety dimensions for specific deployment contexts. Domain-specific red-teaming and ongoing monitoring remain 
essential complements to benchmark evaluation. 
Computational Requirements: While the post-trained models are efficient for inference, the pipeline itself requires substantial 
compute for Stage 1 (adaptation) and Stage 3 (alignment). Organizations with limited compute budgets may need to rely on pre-
adapted models or reduced training scales. 

B. Broader Implications 

Democratization of Deployment: By providing a structured methodology for post-training, 577i Forge lowers barriers to deploying 
capable language models in constrained environments. This has positive implications for organizations that could benefit from AI 
assistance but lack the expertise to navigate post-training complexities. However, it also raises concerns about potential misuse if 
the methodology enables deployment of capable models by actors with harmful intent. 
Governance Standards: The governance framework presented here represents one approach to AI system documentation and 
traceability. As regulatory requirements evolve (e.g., EU AI Act [57], potential U.S. federal regulation), governance frameworks 
will need adaptation. The modular artifact structure is designed to accommodate evolving requirements. 
Environmental Considerations: Post-training adds computational cost beyond pretraining, with associated energy consumption 
and carbon emissions. However, the efficiency gains achieved through compression (73.8% latency reduction, 81.2% memory 
reduction) substantially reduce operational carbon footprint compared to deploying full-precision models. A full lifecycle analysis 
would be valuable for quantifying net environmental impact. 

C. Responsible Deployment Guidelines 

Based on our experience developing and deploying the Forge pipeline, we offer the following guidelines for responsible 
deployment: 

1) Invest in domain-specific evaluation. Standardized benchmarks provide necessary but insufficient evidence of readiness. 
Develop evaluation suites reflecting actual deployment use cases and failure modes. 
2) Maintain human oversight. Post-trained models remain capable of errors and harmful outputs. Design systems with appropriate 
human review for high-stakes decisions. 
3) Implement monitoring from day one. Production issues often manifest gradually. Observability infrastructure should be 
deployed with the initial release, not added after incidents occur. 
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4) Plan for model updates. Foundation models and post-training methods continue to improve. Design deployment infrastructure 
to support model updates without disrupting dependent systems. 
5) Document limitations explicitly. Users benefit from clear communication of what the system cannot do. Model cards and user-
facing documentation should highlight limitations alongside capabilities. 

VIII. CONCLUSION 

This paper presented 577i Forge, a staged post-training architecture for transforming foundation language models into operationally 
deployable systems. The framework addresses the pilot-to-production gap that limits enterprise AI adoption by providing a 
principled methodology connecting adaptation, compression, alignment, and deployment with explicit interfaces, acceptance 
criteria, and governance artifacts. 

Our theoretical analysis established the optimality of the Adapt → Compress → Align → Deploy stage ordering based on 
gradient interference and representation stability considerations. Comprehensive experiments across four model families and seven 
benchmarks demonstrated that Forge achieves 94.2% task performance retention while reducing latency by 73.8% and memory by 
81.2%, with 31.4% improvement in safety metrics and 89.3% jailbreak resistance. Ablation studies confirmed 8.3–15.7% 
improvement over alternative stage orderings on composite metrics. 

Case studies in defense (sovereign IL5/IL6 deployment), healthcare (HIPAA-compliant documentation), financial services 
(regulatory compliance), and edge computing (embedded industrial assistant) validated the practical applicability of the framework 
across diverse deployment contexts with distinct operational requirements. 

The governance framework ensuring traceability from data provenance through signed release artifacts addresses a critical gap 
in production AI systems, enabling compliance with emerging regulatory requirements and supporting the audit trails necessary for 
deployment in regulated industries. 

Future work includes: (1) extension to multimodal models combining vision and language capabilities; (2) development of 
continual learning workflows enabling model updates without full retraining; (3) deeper integration with hardware-specific 
compilation for emerging AI accelerators; and (4) expanded safety evaluation frameworks for domain-specific deployment contexts. 

The 577i Forge framework demonstrates that mission deployment of large language models is achievable through systematic 
engineering methodology. By treating post-training as a structured pipeline rather than ad-hoc experimentation, organizations can 
navigate the path from foundation model to production system with confidence in quality, safety, and compliance. 
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