ARC Nano: Edge Al Electronic Warfare System
577i R&D Lab; Thomas Waweru

Abstract

ARC Nano is a field-deployable Edge Al electronic warfare (EW) system designed to
protect frontline military communications in contested electromagnetic environments. It
combines an open-set radio-frequency (RF) sensing capability with an adaptive
countermeasure engine to automatically detect previously unseen signals and rapidly
mitigate jamming in real time. The system’s architecture integrates a low-SWaP (size,
weight, and power) hardware stack —featuring an NVIDIA Jetson Orin Nano Al module and
a compact software-defined radio (SDR) — with containerized microservices for signal
processing, machine learning inference, decision-making, and secure telemetry.
Emphasis is placed on advanced Al/ML components, including a neural network classifier
for open-set signal recognition and a contextual bandit reinforcement learning algorithm
for optimaljamming countermeasures. These models are trained and calibrated on diverse
RF datasets with rigorous performance targets, achieving over 90% detection of novel
emitters with essentially zero false alarms and dramatically improving communications
uptime under heavy jamming[1][2]. The ARC Nano system demonstrated in simulation
trials a tripling of link availability (from ~50% to >99.9%) and sub-second link restoration
when under EW attack[3][4]. All automated decisions are recorded in tamper-evident audit
logs, ensuring transparency and compliance with Rules of Engagement (ROE). This paper
details ARC Nano’s research and development phases, including algorithm design, system
architecture, testing, validation, and field deployment considerations. Experimental
results from both simulation and initial hardware tests are presented alongside system
diagrams and performance graphs. We discuss the system’s deployment potential — from
soldier-carried units to vehicle or UAV integrations — and its alignment with military EW
modernization needs. In conclusion, ARC Nano offers a trusted, Al-driven EW capability
at the tactical edge, significantly enhancing spectrum situational awareness and resilient
communications for military units under electronic attack.

Introduction

Modern military operations depend on assured access to the electromagnetic spectrum
for communications and intelligence, but adversaries are employing increasingly
sophisticated electronic attacks to disrupt these capabilities. In conflict zones such as
Ukraine, frontline units have experienced sudden jamming and spoofing of their radios,
leading to loss of communication links at critical moments[5][6]. The Army’s imperative to
“win in contested, austere environments” has highlighted the urgent need for edge-
deployable electronic warfare solutions that can sense and **dominate the spectrum
faster than the adversary[7][8]. Specifically, three capability gaps are evident:

e Open-Set Sensing (Electronic Support) — Traditional EW receivers can only
recognize known signal signatures, leaving forces blind to new or modified threat
emitters. The Army requires real-time spectrum monitoring that can detect
unknown or novel signals with high sensitivity and negligible false alarms[9][10].
This means an Al-driven open-set detector that alerts on signals not matching any
known profile instead of misidentifying them orignoring them.

e Adaptive Spectrum Protection (Electronic Protection) - When jamming or
interference occurs, current mitigation (changing frequencies or waveforms) is
often manual and too slow. A solution is needed to automatically protect friendly
comms by agilely adjusting parameters within milliseconds while adhering to
ROE[11]. Essentially, tactical radios need an autonomous “intelligent hopping”
capability that reacts faster than a human, restoring a jammed link in under a
second[12][13] and maximizing communication uptime under attack.

e Telemetry Governance & Auditability — Operating at the tactical edge with limited
bandwidth requires that any EW system be network-efficient and transparent. It
must minimize backhaul data usage, prioritize critical alerts, and provide an audit
trail of actions for commander oversight[14]. This entails sending only important
status updates over the network (e.g. using standard formats like Cursor-on-Target)
and keeping a secure log of every EW action so higher echelons can trust and verify
the autonomous decisions[15][16].

ARC Nano was conceived to fulfill these needs by pairing a calibrated Electronic Support
sensor (for open-set signal detection) with an Electronic Protection agent (for adaptive
jamming mitigation), all wrapped in a governance and integration framework suitable for
field deployment[17]. In essence, ARC Nano is a portable “EW partner” that travels with
frontline units to continuously monitor the RF environment, flag spectral threats as they
arise, autonomously shield friendly communications from interference, and
transparently report its actions up the chain of command[18]. By leveraging recent
advances in edge computing and Al/ML, ARC Nano aims to give small units a trusted
electronic warfare capability that was previously confined to large, centralized EW
platforms.

This paper is structured as follows: The Methodology section describes the system’s
architecture and components, including hardware platform and Al algorithms for signal
recognition and decision-making, as well as the training and calibration techniques
employed. The Results section presents key performance metrics from simulations and
initial tests, demonstrating ARC Nano’s detection accuracy and communication
protection efficacy. In the Discussion, we examine the operational implications of these
results, the system’s integration with existing military technology (such as ATAK and
tactical radios), auditability and safety considerations, and scalability to platforms like
vehicles or UAVs. Finally, the Conclusion summarizes the findings and outlines the path
toward deployment. Appendices provide detailed hardware specifications, an example
audit log schema, and test case summaries for reference. Through an academically

rigorous analysis of ARC Nano’s desigh and performance, we intend to inform military
stakeholders evaluating edge Al solutions for spectrum dominance in contested
environments.

Methodology

System Architecture and Implementation

RF Front-End

Software-Defined Radio (RF Front-End)

Feature Extraction

Radio-HAL: Feature Extraction ew frequency / power command

ES-Lite: Open-Set Signal Detector EP-Lite: Contextual Bandit Decision

Policy/Audit Logging

CoT Telemetry (ATAK/C2)

I
|
:
I
: Status to C2 ne#work
|
|
|
|

Figure 1: ARC Nano system architecture, illustrating the layered design from RF sensing to
decision-making and telemetry output. A portable RF front-end (SDR) captures raw signals,
which are processed by the Radio-HAL service for feature extraction. The ES-Lite analytics
module (Electronic Support) performs Al-based open-set signal detection, while the EP-
Lite module (Electronic Protection) makes adaptive decisions (e.g. channel hopping) via a
contextual bandit algorithm. A policy layer logs all events and sends critical alerts (in
Cursor-on-Target format) to tactical networks (e.g. ATAK).[19][20]

ARC Nano is built as a modular, distributed software stack that runs on a small edge
computing platform attached to or embedded with a tactical radio. The architecture
follows a layered microservice design (Figure 1) to ensure scalability and resilience. At the
lowest layer, one or more RF sensing front-ends (portable SDR devices) continuously

capture raw IQ samples from the environment[21]. These raw RF streams feed into the
radio hardware abstraction layer (Radio-HAL) service, which performs real-time feature
extraction — converting the raw samples into useful spectral features and detecting energy
spikes on certain frequencies[22]. The Radio-HAL essentially serves as a signal detector,
producing a stream of detection events (e.g. a burst detected at frequency X with power Y)
that are then published to the system’s data bus.

A core publish/subscribe bus (built on the Data Distribution Service (DDS) standard, with
a Redis fallback) disseminates these detection events to the analytic and decision
services[23]. At the analytics layer, the ES-Lite service (Electronic Support Lite) runs the Al
model for open-set sighal inference. Each time the Radio-HAL flags a signal, ES-Lite
analyzes its features using a trained neural network to determine if the signal matches a
known friendly or enemy emitter, or appears to be unknown/uncharacterized[24]. The
outputis a “risk score” or confidence that the signal is something novel or malicious. In
parallel, the EP-Lite service (Electronic Protection Lite) continuously monitors the state of
friendly links and interference. EP-Lite implements a contextual bandit decision engine
that decides if and how to adjust the communication link (e.g. switch frequency, change
modulation, adjust power) to maintain connectivity in the presence of jamming[25][26].
The contextual bandit treats each possible action (stay on channel, hop to a new channel,
etc.) as an arm to pull, and leverages reinforcement learning to pick actions that maximize
link performance given the current interference context. Both ES-Lite and EP-Lite operate
concurrently and publish their findings (unknown-signal alerts or suggested
countermeasures) to the next layer.

At the policy and output layer, a Policy/Audit service receives inputs from both Al
modules. This service is responsible for enforcing operational constraints and recording a
timeline of events. Every detection and every countermeasure decision is written to an
audit log entry, cryptographically linking (hash-chaining) each entry to the previous one to
prevent tampering[20][27]. The policy layer also translates key events into standard
Cursor-on-Target (CoT) messages — a lightweight XML/JSON format widely used in military
systems — and sends these over the tactical network[28][29]. For example, if an unknown
signalis detected or a frequency hop occurs, a CoT alert is generated (e.g. “Unknown
emitter on 350.000 MHz” or “Jammer detected, channel hopped to 351.000 MHz”). This
allows ARC Nano to seamlessly integrate with battle management apps like
ATAK/WiInTAK, so that EW events appear on the same situational awareness maps used
by soldiers and commanders[30][31]. The system thus not only protects communications
autonomously, but also provides real-time spectrum situational awareness at the
tactical edge.

The entire software stack is deployed using containerized microservices, orchestrated on
the embedded computing platform. Each major function (radio-HAL, ES-Lite, EP-Lite,
Policy) runs in a separate Docker container, communicating via the pub-sub bus. This
design choice improves reliability and modularity: if one service crashes or restarts, others
continue running, and the faulty container can be automatically rebooted without bringing
down the whole system[32]. It also simplifies updates and scaling — new analytics (e.g. a

future signal classifier) could be added as another container subscribing to the same bus.
The use of Docker on an ARM64 Linux OS (NVIDIA Jetson) ensures a consistent
environment and eases the transition from simulation to hardware deployment[33].
Additionally, a Telemetry & Mission Data Plane governs data sharing and logging. A
dedicated metrics hub aggregates performance and health stats (e.g. CPU load, detection
rates) for debugging or operator display, and a backhaul controller enforces a strict
bandwidth budget on all reporting traffic[34][35]. In testing, ARC Nano was configured to
never exceed 200 kbps of status traffic, and indeed the telemetry shaper kept usage under
~0.1 Mbps even during intense jamming scenarios[36][37]. This means ARC Nano’s
presence will not clog tactical networks — a crucial design point for austere environments.

In summary, ARC Nano’s architecture features layered, loosely coupled services
connected through a robust data bus. All computation is done on the edge device —there is
no reliance on cloud or reach-back servers, which is important for low-latency and offline
operation[38]. The system is desighed such that multiple ARC Nano units could be
deployed in a network and share information, though each operates autonomously at the
node level. The microservice approach also supports easy porting to more powerful
platforms if needed (for instance, running the containers on a vehicular computer or a
cloud server for testing). This flexible architecture lays the groundwork for ARC Nano to
serve as an “EW guardian” for frontline units, continuously listening to the spectrum,
detecting threats, protecting friendly links, and reporting up the chain[39][40]-allin a
transparent and governable manner.

Hardware Platform and Specifications

ARC Nano’s hardware is built from commercial off-the-shelf (COTS) components
optimized for low size, weight, and power. The reference implementation uses the NVIDIA
Jetson Orin Nano system-on-module as the computing core and a USB-powered SDR as
the RF front-end[41][42]. This combination provides a capable edge Al processing unit
paired with a wideband radio in a form factor suitable for dismounted use. Table A1 in
Appendix A summarizes the hardware specifications, and key points are discussed below.

Computing Module - NVIDIA Jetson Orin Nano 8GB: The Jetson Orin Nano was selected
for its excellent performance-per-watt on Al workloads and its compact form factor. This
module features a 6-core ARM Cortex-A78AE CPU and an NVIDIA Ampere GPU with
1024 CUDA cores and 32 Tensor Cores, delivering up to 40 trillions of operations per
second (TOPS) of Al compute within a configurable 7-15 W power envelope[43][44]. In
practice, the Orin Nano provides roughly 1.5x% the Al throughput of its predecessor (Jetson
Xavier NX) at similar or lower power consumption[44][45]. Our prototype runs the Jetson at
a~10-15 W typical draw, which can be sustained on battery power for several
hours[46][47]. The module’s physical size is only 70 x 45 mm, allowing it to fitinto a
handheld device chassis[48]. It comes with 8 GB of LPDDR5 memory, sufficient for ARC
Nano’s containerized microservices (which have been optimized to run within this memory
footprint)[49][50]. The Orin Nano runs the standard NVIDIA JetPack software stack (Ubuntu
Linux with CUDA libraries), ensuring compatibility with modern Al frameworks and offering

long-term software support from NVIDIA[51][52]. This is important for longevity: earlier
Jetson models are nearing end-of-life for software updates, whereas Orin Nano is new and
vendor-supported for years to come[51]. Notably, the Orin Nano lacks a built-in video
encoder (NVENC) to save power, but this is not a concern for our application since we
focus on RF signal processing, not video[47]. Overall, the Orin Nano hits a “sweet spot” for
ARC Nano - it provides ample Al horsepower to run the open-set detection and bandit
decision algorithms in real time, while keeping power low enough for battery operation
and generating minimal heat[43][47]. In our testing on real hardware, the Jetson module’s
utilization stayed under ~50% even during worst-case interference events, and total
system power was measured at about 12 W under full load, well within a soldier-worn
battery’s capacity[53][47].

RF Front-End - SDR Options: For the radio front-end, ARC Nano can work with various
SDRs that meet the bandwidth and frequency requirements. The current prototype uses
the Ettus Research USRP B205mini-i, a proven SDR in military research contexts[54][55].
The B205mini is a one-transmit, one-receive (1x1) SDR covering 70 MHz to 6 GHz with up
to 56 MHz of instantaneous bandwidth[56]. It features a 12-bit ADC/DAC and the Analog
Devices AD9364 RFIC, achieving a noise figure <8 dB and a transmit power of +10 dBm in
many bands[56][57]. Despite its high performance, itis extremely small (about 83x51 mm,
weighing ~24 grams) — roughly the size of a credit card — and draws only ~3-5 W via a USB
3.0 interface[54][58]. The B205mini’s streaming interface and drivers (UHD) are well-
optimized, enabling reliable low-latency capture of signals which is critical for rapid
jammer detection. In fact, Ettus USRPs like this have been widely used in DoD EW
experiments and even field deployments, giving confidence in their robustness[59]. The
only limitation is the lower frequency bound of 70 MHz, which means it cannot directly
monitor some VHF-low tactical nets (30-70 MHz) without an external down-converter[60].
However, many Army communication channels and common threat bands (VHF/UHF, L-
band, S-band, C-band) are within 70 MHz-6 GHz, so this range is acceptable for most
missions.

An alternative SDR we evaluated is the LimeSDR Mini v2.0, which offers a broader native
frequency coverage down to 10 MHz (up to 3.5 GHz) and is more cost-effective[61][62].
The LimeSDR Mini is also 1x1 with ~30 MHz bandwidth and 12-bit sampling, using the Lime
Microsystems LMS7002M RFIC. Its key advantage is covering the 30-88 MHz band out-of-
the-box, which the B205mini cannot (for example, it can natively capture VHF tactical radio
signals in the 30-50 MHz range)[62][63]. Its noise figure and dynamic range are in a similar
ballpark as the USRP (NF ~6-8 dB at high gain) according to community
measurements[64][65]. The LimeSDR Mini is extremely small (board ~69%x31 mm) and bus-
powered by USB, drawing roughly 500 mA at 5 V (~2.5 W)[66][67]. This low power
consumption means it produces little heat, simplifying cooling. The trade-offs are a slightly
narrower bandwidth (about 30 MHz reliably) and slightly lower linearity — e.g. maximum TX
power around +0 to +10 dBm, and the potential for a marginally higher noise floor in some
configurations[68][69]. The LimeSDR has a strong open-source community (MyriadRF), and
it supports standard frameworks like SoapySDR and GNU Radio, making integration
relatively straightforward[68][70]. We note that NATO researchers and open-source

telecom projects have used LimeSDRs, indicating a level of maturity and trust in the
device. For ARC Nano, the choice between B205mini and LimeSDR comes down to
performance vs. cost and frequency needs: the USRP offers best-in-class RF
performance (dynamic range, filtering, clock stability) at a higher price, while the LimeSDR
offers broader frequency and affordability with acceptable performance. Both are
supported by our software —in fact, ARC Nano’s radio interface is abstracted via SoapySDR
drivers, meaning we can swap SDR models with only minor configuration changes[71].
Our prototype was built and tested with the B205mini (for maximum sensitivity in a dense
EW scenario)[54][58], but we have also validated the LimeSDR in the lab as a drop-in
alternative for missions that demand VHF coverage or lower cost.

The hardware stack is rounded out by ancillary components such as antennas, power
supply, and enclosure. In field use, ARC Nano would connect to wideband antennas
appropriate for the frequencies of interest — e.g. a tape or whip antenna covering 30-512
MHz for VHF/UHF, and perhaps a smaller wideband antenna or a set of band-specific
antennas for higher frequencies (L/S/C bands, etc.)[72][73]. In a dismounted configuration,
the device could even leverage the soldier’s existing radio antenna through a coupler, to
minimize the number of antennas carried[74][75]. Power supply can be provided by
standard military batteries (e.g. a BB-2590 or similar Li-ion pack) or from vehicle power
when mounted. At ~12 W draw, a typical 150 Wh battery could run ARC Nano for over 12
hours. The device can accept a wide input voltage (with DC-DC converters) to allow
flexibility (battery or vehicle 12-28 V power)[76]. Thermal management is a critical aspect
given the ~12-15 W heat dissipation in a small box. The Jetson Orin Nano module, when
running near its 15 W limit, usually requires a heatsink and fan (the dev kit ships with a
fan)[77]. For arugged field device, the design can incorporate a combined passive and
active cooling solution: for example, a finned aluminum case that acts as a heatsink,
supplemented by a small ruggedized fan that turns on only when needed[77][78]. The fan
would need to be ingress-protected (dust/water resistant) and possibly have replaceable
filters to handle sand and dust in desert conditions[79]. Our approach is to use passive
cooling under normal conditions and engage the fan in extreme heat or sustained high load
(with temperature-triggered fan control)[80][81]. The SDRs themselves are low-power (2-3
W) and typically can be cooled by conduction to the case without special
requirements[82][83]. We have planned environmental tests (thermal chamber from 0°C to
40°C) to verify the system doesn’t overheat or throttle in field conditions[82].

Finally, mechanical design and ruggedization ensure the device is field-ready. The ARC
Nano components are housed in a robust enclosure roughly the size of a thick paperback
book, targeting a total weight of only a few pounds[84][85]. A milled aluminum chassis
provides structural strength and also acts as RF shielding (preventing outside interference
from coupling directly to circuits)[86][87]. Internal components (the Jetson module, SDR
board, etc.) are mounted with shock-absorbing standoffs to survive drops and
vibrations[86][87]. All connectors are chosen for reliability: SMA or TNC for RF ports,
sealed rugged connectors for power and data interfaces. The enclosure is gasket-sealed
for basic water and dust resistance (at least IP54 or better). Figure 1’s design inherently
isolates the radio from the compute electrically (except through the intended data

interface), and the metal enclosure further helps by serving as a Faraday cage, reducing
electromagnetic leakage. The goal is a device that a soldier can toss in a rucksack or
mount on a vehicle without delicate handling — truly an operational piece of gear rather
than a lab instrument. In our roadmap, ruggedizing the prototype is a key milestone before
wide deployment[88][89].

In summary, ARC Nano’s hardware integrates a high-performance edge Al module
(Jetson Orin Nano) and a flexible RF sensor (SDR) in a compact, rugged package. By
using COTS components, we leverage the latest commercial tech and keep costs
manageable (the Jetson module is ~$250, the SDR $300-$1000 depending on
model)[90][69]. There are clear upgrade paths: for even greater performance or
vehicle/UAV installations, one could substitute an NVIDIA Jetson Orin NX or AGX Orin
module (providing up to 100 TOPS with higher power budget)[91][92], or use multi-channel
SDRs (like Ettus B210 or BladeRF xA4) if needed for direction-finding or MIMO
applications[93][94]. Thanks to the modular, containerized design, these substitutions
would require minimal software changes - JetPack’s unified architecture ensures the same
code runs on Orin NX/AGX, and our SoapySDR abstraction would accommodate a dual-
channel radio. This scalability demonstrates that ARC Nano’s design can grow from a
“nano” edge device up to vehicle-mounted or enterprise-class systems while maintaining
the same core functionality[95][96]. The baseline handheld configuration, however, is
already a breakthrough: it embodies an EW capability that traditionally required racks of
equipment, now shrunk to a device that “could be battery-operated in a rucksack”[84].

Al/ML Components and Algorithms

A central innovation of ARC Nano lies in its Al/ML algorithms for spectrum awareness and
adaptive defense. Unlike conventional rule-based EW systems, ARC Nano employs
machine learning models that can generalize beyond their training set and learn optimal
actions in dynamic conditions. Two key ML components are deployed: (1) an Open-Set
Recognition (OSR) model for detecting unknown RF signals, and (2) a Contextual Bandit
decision-maker for choosing countermeasures. Both were developed with careful
attention to training methodology, calibration, and computational efficiency to meet real-
time field requirements.

Open-Set Signal Recognition (ES-Lite): Traditional RF signal classifiers operate in a
closed-set manner —they can only classify signals into the categories they were trained on,
and will force every input into one of those known classes. This is inadequate for EW,
where new threat waveforms or emitters may appear that were never seen in training. ARC
Nano’s ES-Lite module implements an open-set recognition approach, meaning it can
identify when a signal does not match any known class and label it as
“unknown”[97][98]. In practice, this prevents the system from misidentifying a novel
enemy jammer as, say, a friendly signal; instead it raises an alert for further analysis. To
achieve OSR, we designed a neural network classifier and augmented it with statistical
confidence calibration techniques[98][99].

The model is a deep neural network (with a convolutional front-end for feature extraction
from spectral data, followed by fully-connected layers) trained on a synthetic dataset of
6,000 signals. These represent known friendly and enemy waveforms as well as a wide
variety of anomalous signals injected to simulate “unknown” examples[100]. During
training, the network learns to output class probabilities for each known class. However,
rather than relying on the raw softmax probabilities (which in standard classifiers can be
over-confident even for unfamiliar inputs), we compute a composite “risk score” for each
detection. This score is derived from multiple internal signals of the model - e.g. the
highest softmax probability, the entropy of the probability distribution, and the distance of
the input’s feature vector from the known class centroids in latent space[100][101]. We
then apply conformal prediction calibration to this risk score[102]. Using a hold-out
validation set (which includes known and unknown samples), we set a threshold on the
risk score such that the model meets a desired true-positive rate (TPR) for unknowns while
keeping the false-positive rate (FPR) extremely low[103]. In other words, we adjust the
threshold so that, for example, “at least 90% of truly novel signals trigger the unknown
alarm, while false alarms occur in less than 0.001% of cases.” This conforms to our design
target of 285-90% detection probability for new signals with <<10 false alarms per
day[104][105]. After calibration, the OSR model indeed achieved TPR = 0.90 for unknown
signals at an estimated false alarm rate = 1e-5 (0.001%)[103][106]. In practical terms,
this means the system will catch over 90% of novel emitters while raising at most one
false alert in 100,000 events (virtually zero false alerts in a typical day’s operation). This
performance level is confirmed in our evaluation results (Section 4), where no false
unknown alerts were observed across numerous runs, and unknown signal detection
consistently stayed around the 90% mark even in stress scenarios[107][108].

An important aspect of open-set design is ensuring that known friendly signals are not
misclassified as unknown threats (false positives). Thanks to the calibrated risk scoring,
our model assigns low risk values to familiar emitters. In tests with heavy jamming in the
mix, the risk score for known-friendly signals stayed below ~0.03 at the 90th
percentile[109][110]. This is safely under the unknown threshold (~0.5 on the risk scale,
after calibration), meaning friendly or expected emitters are almost never flagged
erroneously. We store all the calibration parameters and the threshold value in an audit-
ready JSON manifest alongside the model, so that evaluators can review exactly how the
threshold was chosen and even adjust it if needed for different theaters (e.g. ifa
commander wants a more aggressive or more conservative setting, that can be tuned and
documented)[111]. The overall OSR approach in ARC Nano is thus one of cautious
vigilance - the system is highly sensitive to new signals but also heavily calibrated to avoid
crying wolf. This open-set classifier is a major departure from legacy EW receivers,
providing a solution to the “unknown emitter” problem by leveraging modern deep learning
and rigorous uncertainty quantification[97][98].

Adaptive Decision Engine (EP-Lite, Contextual Bandit): Once a threat like a jammeris
detected, ARC Nano’s job is not merely to alert but also to act. The EP-Lite module is
responsible for electronic protection (EP) — automatically countering interference to keep

communications online. We formulated this as a reinforcement learning problem where
the agent (ARC Nano) must choose the best action to maximize the “reward” of link
performance. However, classical reinforcement learning (e.g. deep Q-learning) can be
slow to converge and may not adapt quickly to changing jammer tactics. Instead, we
employed a more sample-efficient approach: a Thompson sampling contextual bandit
algorithm[112]. In a contextual bandit, at each decision opportunity the agent observes
some context (state) and then chooses one of several actions (arms) to pull, receiving a
reward. Unlike a full RL problem, the future is not explicitly modeled; it focuses on
immediate reward and continuously updates its estimates for each action in each context.

In ARC Nano’s EP-Lite, the context includes features such as the type of jamming
observed (for instance, is it a sweeping jammer, a barrage noise jammer, a smart reactive
jammer, etc.), recent history of what actions have been effective, and current link quality
metrics[113][114]. The actions are defined in a configuration file and can include: “stay on

» <«

current frequency”, “switch to alternate channel 1”, “switch to channel 2”, “reduce
transmit power”, “increase error-correcting code rate”, etc., subject to what the radio can
do and what is allowed by policy[112][115]. For our prototype we focused on frequency
hopping actions (e.g. select from a list of preset good channels) and a transmit power
tweak, since those were available via the radio control interface. The bandit algorithm uses
Thompson sampling, a Bayesian approach to balancing exploration and exploitation[112].
In simple terms, it maintains a probability distribution (belief) over the reward of each
action in each context, and in each round it samples from these distributions to decide an
action — thus sometimes trying less certain options (exploration) and mostly using the
currently best-known option (exploitation). Thompson sampling naturally adapts as it
gathers more data, and it is computationally lightweight (we chose it over something like
an epsilon-greedy deep neural net approach for simplicity and reliability on the edge
device).

Crucially, we constrained the bandit with Rules of Engagement (ROE). A separate ROE file
defines hard limits — e.g. allowable frequency bands to hop to, max transmit power,
prohibited actions — ensuring the Al never suggests an action outside the commander’s
intent or regulatory boundaries[116]. For example, if certain channels are reserved for
other purposes or higher headquarters, ARC Nano’s bandit will not consider those, nor will
it exceed power limits that could interfere with friendly units. This guarantees policy
compliance by design.

The EP-Lite decision loop runs extremely fast: when jamming is detected or link throughput
drops below a threshold, the bandit computes a new action within a few milliseconds and
issues it to the radio. We measured that the end-to-end detection-to-countermeasure
latency on the Jetson is well under 100 ms, meeting our goal for near-instant
reactions[117][118]. The system then monitors if the link recovers (throughput goes back
up). The bandit algorithm receives a reward signal based on improvement in link
performance, which it uses to update its internal model. Over repeated encounters, it
effectively learns which channel is best to evade a particular jammer style. For instance, if
a narrowband jammer sits on channel A, the bandit will quickly learn that switching to

channel B yields high reward (restored throughput), and will do so more and more
confidently in similar contexts.

Importantly, given the safety-critical nature of automated EW responses, we built
extensive logging and explainability into EP-Lite. Every time a retune or adjustment
action is taken, the system logs: the time, the identified jammer type or interference
condition, the action chosen (new frequency, etc.), and a textual justification for the
action[119]. For example, the log might record: “Time 102.5s — Detected sweeping jammer
on Channel A; EP action: switched to Channel B (justification: higher signal-to-interference
ratio observed).” This gives human operators and spectrum managers full insight into why
the Al did what it did[120][121]. These logs are part of the audit trail and can be reviewed
after a mission to verify that ARC Nano’s actions were appropriate and within bounds.
During simulation development, we also kept the telemetry format identical to what we
use in live mode, so we can directly compare the bandit’s decisions in sim vs. reality to
ensure consistency[122]. The net effect is a transparent, bounded-learning agent: it
adapts to maximize comms performance under attack, but always within human-set limits
and with human-readable reasons for its decisions.

Training and Calibration of Models: The OSR classifier was trained using supervised
learning on labeled data. We generated a large synthetic dataset of modulated signals
(FM, PSK, QAM, OFDM, etc. for known types) plus various noise and interference patterns
to serve as unknowns. Data augmentation was applied (random frequency offsets, varying
SNRs, etc.) to make the model robust. The model was implemented in PyTorch and trained
on a GPU workstation, then exported to TensorRT for optimized inference on the Jetson.
The final model size is only a few megabytes, and inference latency on the Orin Nano GPU
is on the order of a couple of milliseconds per signal event — easily real-time. Calibration of
the risk score was done with the conformal prediction method as mentioned: we used an
approach inspired by Angelopoulos & Bates (2021)[123] to set a threshold that guarantees
a certain error rate under minimal distribution assumptions. We validated the calibration
by checking that in our test scenarios, the false alert rate indeed matched the target (in
fact, we saw zero false unknowns in thousands of events, consistent with <1e-5
probability). One discovery was that including a small fraction of “unknown” examples in
training (even though the network doesn’t explicitly label them as a separate class) helped
the model learn a representation that made unknowns easier to distinguish. This is akin to
out-of-distribution (OOD) training techniques in recent ML literature, and we referenced
works like Bendale & Boult (2016) on OpenMax networks[124] and others for guidance on
OSR best practices.

The bandit decision module does not require upfront training on data in the same way;
instead, it learns on the fly. However, to speed up convergence and ensure safe initial
behavior, we gave it a prior bias: initial estimates for each action’s reward are set based on
domain knowledge (for example, hopping to a known backup channel s likely good if a
jammer is present). Thompson sampling uses Bayesian priors, so we effectively “pre-
trained” it with some pseudo-counts for each action, derived from preliminary simulations.
During simulations, the bandit had usually stabilized its strategy within the first few

jammer attacks (seconds), and it was able to re-learn if the jammer tactics changed. We
tested non-stationary scenarios (like ajammer that switches patterns mid-run), and the
contextual bandit adjusted correctly —its design inherently handles changing reward
distributions by continuous update.

Both Al components were developed with computational efficiency in mind to run on the
modest Jetson platform. The OSR model uses single-precision GPU arithmetic and batch
size 1, which is fine given individual signal events. The bandit is implemented in Python
with numpy, which is fast enough given the small number of actions; it could be ported to
C++ if needed for even lower latency, but that was unnecessary. We also used
concurrency carefully: the ES-Lite and EP-Lite services run in separate CPU threads and
use asynchronous message passing, so they don’t block each other. NVIDIA’s tools
indicated that our software utilizes both the CPU (for radio I/0 and bandit logic) and GPU
(for neural net inference) in parallel, achieving a good pipeline throughput.

Development, Testing, and Validation Process

From the outset, we emphasized a rigorous R&D process with continuous testing and
evidence gathering to build trust in ARC Nano’s performance. The development cycle
included simulation-based evaluation, automated regression tests, and iterative
hardware-in-the-loop trials.

During simulation development, we created a comprehensive test harness for ARC
Nano’s software. We built a script-driven pipeline (run_pipeline.py) that can
automatically execute an entire experiment end-to-end: generate or load a synthetic RF
scenario, run the ES-Lite and EP-Lite modules on that scenario, log all outcomes, and then
compute performance metrics and plots[125]. This allowed us to quickly evaluate the
effect of any code change on key metrics. We established quality gates that must be met
before new code is accepted: forinstance, any change to the OSR model must still yield an
ROC AUC = 0.80 and unknown-signal TPR = 0.90 with zero false alarms on the test suite,
otherwise it is rejected[126]. Similarly, changes to EP logic must preserve or improve link
recovery times and throughput. We integrated these into a continuous integration (Cl)
system, so every code commit triggers a quick test (using a small scenario or subset of
data) to ensure nothing regresses critical performance[127]. Additionally, we have a
“stress suite” (run_stress_suite.py) that specifically runs challenging multi-jammer
scenarios and collects statistics across multiple random seeds[128]. All the figures,
tables, and performance claims in this paper (and our internal documentation) are
generated directly from the data logs via analysis scripts[129]. This ensures traceability: for
any number or graph, we can point to the exact simulation run and conditions that
produced it. Every run (simulation or hardware test) produces a self-contained data bundle
with raw signals, decisions, and metrics, which we store in an artifact registry[130]. This
approach enables reproducibility and easy cross-comparison between simulation and live
results.

We conducted extensive deterministic simulations to validate ARC Nano’s capabilities.
The scenarios ranged from benign environments (just a few friendly signals) to extremely
harsh ones (multiple overlapping jammers, high background noise, etc.). We used
deterministic seed values for pseudo-random processes to ensure results are repeatable
and comparable[131]. Key performance indicators measured include: detection True
Positive Rate and False Positive Rate for unknown signals, classification accuracy for
known signals, communication link availability (fraction of time throughput is above a
threshold), average throughput, and recovery time after jammer onset. We also monitored
resource usage — CPU/GPU load on the Jetson, network bandwidth used for telemetry, and
power consumption - to verify that the system meets deployment constraints.

In parallel to simulation, we prepared for hardware testing. We containerized the software
early, so we could deploy the same containers on a Jetson Orin Nano Developer Kit with a
real SDR attached. A hardware-in-the-loop (HIL) test bench was set up where the SDR
could either capture live ether or play back recorded 1Q files from our
simulations[132][133]. This means we could feed the exact same scenario that we ranin
simulation into the real hardware and see if the outcomes match. Our hardware integration
plan (detailed in Appendix C test cases) proceeded in stages: first simple functional tests
on quiet channels, then introduction of one jammer, then multiple jammers, measuring
latencies and verifying that detections and actions occur as expected in real
time[134][135]. We gave ourselves concrete acceptance criteria like “detector triggers
within 50 ms of sighal appearance” and “link hop executes within 100 ms of trigger” to
ensure the real-time requirements are met. So far, early HIL tests indicate the system
meets these timing requirements and stays within ~15 W total power draw, aligning with
the simulation-based estimates[136][137].

A particularly important validation step was confirming that the calibrations and
thresholds set in simulation still hold on real RF sighals. Real analog signals can differ
slightly — for example, additional RF noise or distortions might affect the risk score
distribution. In Week 2 of our hardware test plan, we focused on dynamic range and
latency characterization: feeding challenging waveform patterns and measuring the
detector’s risk scores and the bandit’s response times[138][139]. Thus far, the unknown
signalrisk scores on real captures appear consistent with simulation results; any minor
differences will be addressed by adjusting the threshold or retraining on a mixture of real
data (this is part of the iterative loop —we plan to refine the model with real-world captures
if needed)[138][140]. By maintaining the same data schema and analysis code for both sim
and real tests, we can directly overlay results for an apples-to-apples comparison[141].

Finally, we prepared for a live over-the-air demonstration once lab testing is complete.
The demo scenario (see Appendix C) involves two friendly radios communicating, with ARC
Nano attached to one, and an adversarial jammer attempting to disrupt them[142][143].
The success criterion is that with ARC Nano enabled, the communication sustains
throughput (voice/data continues clearly) despite the jammer, whereas if ARC Nano were
off, the link would fail. We will also integrate the system with an ATAK device during the
demo to show alerts in real time to observers[144][145]. As of the writing of this paper, the

hardware prototype is being ruggedized and prepared for such field trials, which are
anticipated to occur within the next 1-2 months. All data from these field tests will be
recorded for post-hoc analysis, further strengthening our evidence base with real-world
performance metrics[146][147].

Through this multi-phase testing approach - simulation, hardware bench tests, and
planned field trials — we have aimed to de-risk the technology and build quantitative
confidence. Every claim we make is backed by reproducible data (with references to
technical notes or data logs), and we have strived to follow a scientific method in
development (hypothesize, test, measure, iterate). This rigor is particularly crucial for
military Al systems, where trustworthiness and reliability are paramount. In the next
section, we present the key results obtained from our evaluation process, demonstrating
how ARC Nano performs in its core functions of detecting unknown emitters and defeating
jammers.

Results

We report ARC Nano’s performance across two primary functions: open-set signal
detection and spectrum protection (jammer mitigation). All results here are from
controlled simulation experiments unless otherwise noted (real hardware results are
beginning to be collected and show similar trends). Each scenario was run multiple times
to account for variability, and we present average values with representative ranges. As
noted earlier, no result is a single run anecdote — everything is backed by repeated trials
and logged data.

Open-Set Detection Performance: ARC Nano’s ES-Lite was evaluated on scenarios
containing a mix of known friendly signals, known hostile signals, and truly unknown
signals (i.e., signal types not in the training set). We tested both short-duration scenarios
(~3 minutes) and extended “soak” scenarios (10 minutes), with varying complexity:
some runs had only one emitter at a time, while others had multiple simultaneous emitters
and up to 30% of them being unknown types (a very stressing case)[148][149]. Figure 2a
would illustrate a typical Receiver Operating Characteristic (ROC) curve from one such
test, butin all cases the ROC area was essentially near-perfect (AUC = 1.000) — indicating
the model can almost completely separate unknown vs. known instances[149][150]. At the
chosen operating threshold (set to meet the =0 false alarm criterion), the True Positive
Rate (TPR) for unknown signals remained around 90-91% even in the most challenging
conditions[151][152]. The false alarm rate was effectively zero; in quantitative terms it
was <10”-5 per event, which corresponds to less than one false unknown alert in a full day
of monitoring[151][152]. Table 1 below (from the simulation data) highlights a few
representative outcomes:

Table 1: Open-set detection metrics under various scenarios (mean * std over 4 runs).
‘Baseline’ refers to runs without the adaptive EP agent active (to isolate the detector’s
performance), while ‘Auto-tune’ refers to runs with ARC Nano’s EP active. The presence of

»

the EP agent can indirectly influence detection (e.g., by changing signal exposure). “Stress
scenarios include dual jammers and high interference (30% unknown signals).[153][154]

Unknown False Alarms (per Known-signhal Risk (90th
Scenario TPR 24h) pct)
Baseline 180 s (no 0.769 = ~0 (K1) 0.0192 (+x0.0009)
EP) 0.251
Auto-tune 180 s (EP 0.911 = ~0 (K1) 0.0192 (+x0.0009)
on) 0.005
Stress Baseline 600s 0.902 + ~0 (K1) 0.0318 (+0.0002)
0.003
Stress Auto-tune 600 0.902 + ~0 (K1) 0.0318 (+0.0002)
s 0.003

Several observations stand out. First, in normal conditions, the unknown-signal TPR was
already high (~77%) even without EP, but it improved to ~91% when the EP agent was
active[155]. We hypothesize this is because with EP active (“Auto-tune”), the system
sometimes exposes itself to a wider range of spectrum (by hopping channels, etc.),
allowing it to encounter and detect more unknown bursts[156]. In essence, the adaptive
defense mechanism also enhanced sensing — an interesting synergy. In the toughest 10-
minute stress scenario with continuous jamming and many signals, the TPR held at
~90.2%[107][108]. Importantly, across all runs we observed zero false unknown alerts —
a validation of our conservative calibration. Friendly signals virtually never triggered the
unknown alarm; the 90th percentile risk scores for known emitters were around 0.02-0.03
(ona[0,1] scale), which is below the threshold (~0.5)[108][157]. This gives us confidence
that ARC Nano’s sensing component can maintain high vigilance without “crying wolf”,
even amidst chaotic spectral environments. In a field scenario, this means an operator can
trust that when ARC Nano flags an “Unknown Emitter,” it’s truly something unusual that
warrants attention, rather than just a glitch or a friendly transmission mis-read.

Spectrum Protection Performance: We next evaluated how well ARC Nano’s EP-Lite
agent preserved a friendly communication link under intentional jamming. We simulated
a simple two-radio link (one acting as a Blue force transmitter-receiver pair) with a certain
nominal data throughput, and then introduced hostile jamming. Two scenarios were
examined: a 3-minute attack (where a jammer comes on, stays for a short period) and a
prolonged 10-minute interference scenario with multiple jammers alternating and
additional background noise (stress test)[158][159]. For each scenario, we measured key
link performance metrics with and without ARC Nano active:

e Link Availability: The fraction of time the link’s throughput stayed above a minimal
operational threshold (e.g., enough to sustain voice or data).

e Throughput: The average data throughput (in Mbps) achieved over the scenario.

e Recovery Time: The average time it took to restore the link after ajammer onset
(only applicable when EP is active; without EP the link might not recover at all until
jammer stops).

e We also compute gains: the improvement in availability and throughput when using
ARC Nano vs baseline.

These results are summarized in Table 2 and illustrated in Figure 2b (bar graph).

15 Link Performance under Heavy Jamming (Stress Test)
. Baseline (No EP)

I ARC Nano EP

1.00

1.0f

0.8

0.6

Value

0.46

0.45

0.4

0.2}

0.0

Link Availability Throughput

Figure 2: Link performance under heavy jamming, comparing baseline (no EP) vs. ARC
Nano’s EP active. In the 10-minute stress test with dual jammers, ARC Nano maintained
~99.97% link availability vs ~46% in baseline, and improved throughput from ~0.29 Mbps to
~0.45 Mbps[160][161]. Even in shorter jam scenarios, ARC Nano almost completely
preserved the link (99%+ uptime) vs only ~50% uptime without it[162]. Error bars are
negligible at this scale (variation <0.01). Data from Table 2 and references.[163][164]

Table 2: Friendly link performance under jamming, with vs without ARC Nano EP. “Auto-
tune” is ARC Nano on. Gains show absolute improvement over baseline.[165][166]

Link Throughput Avg Recovery Avail. Thrpt.
Scenario Availability (Mbps) Time Gain Gain
Baseline 180s 0.5056 0.3070 -(no - -
(no EP) recovery)
Auto-tune 180s 0.9989 0.4529 0.600s +0.4933 +0.146

(with EP) (Mbps)

Link Throughput Avg Recovery Avail. Thrpt.

Scenario Availability (Mbps) Time Gain Gain
Baseline 600s 0.4643 0.2918 - - -
(stress)

Auto-tune 600s 0.9997 0.4499 0.200s +0.5354 +0.158
(stress) (Mbps)

The improvement due to ARC Nano is dramatic. In the 3-minute jamming scenario,
without EP the link was only available ~50.6% of the time (essentially up until the jammer
hit, after which comms were lost)[162][164]. With ARC Nano active, link availability jumped
10 99.89%, meaning the link was nearly uninterrupted despite the jammer[162][164].
Throughput similarly rose from ~0.307 Mbps to ~0.453 Mbps, almost reaching the link’s
normal capacity[167][164]. The system was able to restore the link on average in 0.6
seconds after jammer onset[168]. In contrast, without ARC Nano there was effectively no
chance to recover during the jammer’s presence (no autonomous hopping, so the link
stayed down)[168][169]. In the more aggressive 10-minute stress test, the baseline link
was “crushed” — only ~46.4% available, meaning the jammers had it off more than half the
time[163][161]. ARC Nano’s auto-tuning sustained >99.97% availability, basically
neutralizing the jamming impact altogether[163][161]. Average recovery time improved
further to about 0.2 seconds - the bandit algorithm had learned to react almost
immediately at jammer onset, often preemptively jumping frequencies as soon as it
sensed interference[163][170]. Throughout, the throughput with ARC Nano stayed
around 0.45 Mbps vs ~0.29 Mbps baseline, a roughly 55% increase in data rate under
continuous attack[163][170]. These results underscore that ARC Nano’s EP agent
provides an order-of-magnitude improvement in maintaining communicationsin a
contested spectrum[171]. Instead of networks going down for minutes (or indefinitely) due
to jamming, they experience only split-second hiccups before resuming normal operation.

Figure 2b’s bar chart visually reinforces how close to 100% the link metrics get with ARC
Nano, compared to roughly half or less without it. Such robust performance can be
mission-critical: for example, in a real operation, this could mean the difference between
a platoon being able to receive an urgent order under fire, versus being effectively cut off by
enemy EW.

Equally important is that these aggressive countermeasures remained within policy and
safety limits. Reviewing the logs from these runs, we confirmed that ARC Nano never
violated ROE: transmit power never exceeded the allowed max, and the frequency hops
stayed within the authorized spectrum bands[172][173]. The system also avoided
oscillation —it typically found a stable alternate channel within one or two hops and stayed
there, rather than chaotically jumping around (which could itself disrupt
communications)[174]. Each retune decision was logged with its rationale, and those audit
logs show, for instance, the sequence of jammer types detected and the channel changes
executed[175][176]. A spectrum manager or analyst can thus follow the entire engagement
after the fact: e.g., “Jammer appeared on Channel A at time T, system moved to B at

T+0.2s, jammer followed to B at T+X, system moved to C, etc.” with justifications like
“(justification: detected frequency sweep, needed clear channel)”. This transparency
builds trust that the Al is acting appropriately; indeed, it provides a built-in after-action
review tool.

Telemetry and Network Impact: We also measured ARC Nano’s footprint on the network
and host system resources during these scenarios. As noted, the backhaul (network)
usage was capped at 200 kbps. In the worst-case test with dual jammers and continuous
events, ARC Nano’s reporting stayed around 100 kbps (0.1 Mbps) on average, well below
the cap[37][177]. This includes all CoT messages about detections and hops. Such a low
data rate would not saturate even narrow tactical data links, meaning ARC Nano can
operate in bandwidth-constrained environments without hindering other traffic. On the
computing side, the Jetson Orin Nano handled the load easily: even under heavy activity,
CPU+GPU utilization remained modest (under ~50% aggregate)[53]. This suggests the
hardware could even take on additional tasks or that multiple ARC Nano containers could
run on one device if needed. Preliminary power measurements in simulation (based on
Jetson power models) indicated the whole system would consume <15 W, which aligns
with our actual measurement of ~12 W on the dev kit[53][178]. These metrics confirm that
ARC Nano is indeed field-practical: it won’t bog down networks or exhaust its battery too
quickly while performing its duties.

Robustness: We analyzed the consistency of results by varying random seeds and minor
scenario parameters (e.g., different specific frequencies for jammers, different message
timing on the comm link). The outcomes were remarkably stable. For instance, three
independent runs of the 10-min dual jammer scenario yielded virtually the same ~0.999
availability and ~0.45 Mbps throughput with ARC Nano, with variance <0.01%[179][180].
This gives confidence that the performance is not a fluke of a particular scenario setup, but
rather generalizes across reasonable variations. We have yet to find a realistic scenario
where ARC Nano performs significantly worse than reported here —which is not to claim
infallibility, but to note that within the scope of our testing (which was extensive), it
consistently delivered strong results.

In summary, the evaluation results strongly support ARC Nano’s effectiveness: it
detects unknown signals with high probability and essentially zero false alarms, and it
protects communications links to the point of making jamming largely ineffective in our
tests. These are precisely the capabilities sought by modern EW requirements. Moreover, it
does so efficiently, within tight resource constraints. In the next section (Discussion), we
interpret what these results mean for real-world deployment, how ARC Nano integrates
into military workflows, and what considerations remain (such as user trust, edge cases, or
future improvements). We will also touch on our plans to test ARC Nano in more complex
environments (multi-node networks, etc.) and how that could further validate and enhance
its value.

Discussion

The development and evaluation of ARC Nano indicate that it has the potential to
significantly enhance tactical electronic warfare and communications resilience on the
battlefield. In this section, we discuss the implications of the results in an operational
context, the integration of ARC Nano with existing military systems, its auditability and
safety features, and the scalability of the system to broader deployments. We also
consider limitations and future directions, linking them to the Army’s modernization
priorities.

Operational Impact - Resilient Communications: Perhaps the most immediate benefit
of ARC Nano is the dramatic improvement in communications reliability under
jamming. Our results showed link uptime going from ~50% to >99% in heavy jamming with
ARC Nano enabled[4][181]. In battlefield terms, this means a unit equipped with ARC Nano
can maintain radio contact even while under electronic attack, whereas without it they
might be cut off. This capability addresses a critical vulnerability: adversaries increasingly
use EW to isolate units by severing their comms. With ARC Nano acting as an automated
“spectrum shield,” every squad or vehicle could have a bubble of electronic protection.
For example, a platoon on patrol could carry an ARC Nano unit linked to their radios; if an
enemy jammer comes on, ARC Nano might instantaneously hop the platoon’s radios to a
clear frequency, often so fast that the soldiers “won’t even notice a drop” in their
comms[182][183]. This ensures command-and-control messages, sensor feeds (like drone
video), and calls for support can still get through under enemy EW. In essence, ARC Nano
denies the enemy the ability to easily disrupt our communications, which can be
battle-deciding. Our simulation showing ~50% vs ~99% link availability is telling: that kind
of difference in uptime (orders and reports flowing vs silence) can determine mission
success or failure[183][184]. Moreover, because the adaptation is automatic and
machine-speed, it reduces cognitive load on soldiers —they don’t need to diagnose
jamming or flip channels manually (which they may not even realize in time). ARC Nano’s
performance in restoring links within 0.2-0.6 seconds is essentially real-time, preserving
the continuity of communications. From a command perspective, equipping units with
ARC Nano could drastically increase the reliability of tactical networks, giving friendly
forces an edge in contested EM environments where adversaries try to sow chaos.

Spectrum Situational Awareness and Electronic Support: Beyond protecting friendly
transmissions, ARC Nano provides a new level of spectrum situational awareness at the
tactical edge. Each ARC Nano unit is effectively a continuous RF sensor scanning the
environment for signals of interest. Its ability to detect and flag unknown emitters in real
time means that soldiers and commanders can be alerted to potential threats or unusual
spectrum activity as soon as they emerge. This is analogous to having a SIGINT/EW
specialist’s ears on every squad’s radio band, 24/7, but automated. For instance, ARC
Nano might detect an enemy UAV’s control signal or a covert push-to-talk that hasn’t been
seen before and immediately raise an alert, cueing the unit to investigate or take cover.
Traditionally, such detection would require dedicated EW assets scanning or post-mission
analysis. Here it’s available on the ground in real time. This fulfills a core Electronic

Support (ES) need identified by the Army: Al/ML-driven threat detection and
characterization of abnormal spectrum activities. By visualizing these detections in
existing tools (like marking an unknown signal on an ATAK map with a location or frequency
if known), commanders gain a richer picture of the EM battlefield[30][185]. It’s worth
noting that this capability could also enable new tactics — e.g., if multiple ARC Nano units
network together, they might triangulate an unknown emitter’s position or collaboratively
identify patterns. While our current focus was on the single-unit use case, the data can
certainly feed into higher-level systems for geolocation or fusion (ARC Nano already
outputs standard CoT messages, which higher echelons could ingest). In summary, ARC
Nano turns each unitinto both a protected emitter and a spectrum sensor, contributing
to overall situational awareness in the EM domain.

Integration with Existing Systems: One design goal was to make ARC Nano “plug-and-
play” with current Army communication and C2 infrastructure. The use of Cursor-on-
Target (CoT) messages and the ATAK integration exemplify this[30][186]. For the end user
(e.g., a platoon leader with an ATAK tablet), ARC Nano’s outputs appear as intuitive
markers or alerts on the map —such as anicon indicating jamming in the area or a
notification that the system hopped frequency to avoid interference. This means no new
specialized interface needs to be learned; ARC Nano feeds data into tools soldiers
already use. The benefit is twofold: decision speed (the information is available at a glance
where they expect it), and broader accessibility (EW information is no longer siloed to EW
personnel only, but can be shared with generalist commanders in a usable
form)[187][188]. On the radio integration side, ARC Nano is designed to interface with
tactical radios either via an intermediary (e.g., as an external SDR “companion” that can
override the radio’s channel via a cable) or via software hooks in modern software-defined
tactical radios. As part of future work, we plan to work with Program of Record radios
(SINCGARS, Harris, TrellisWare, etc.) to allow ARC Nano to send frequency change
commands directly to them[189][190]. This could even be done through a firmware update
to radios so that ARC Nano doesn’t have to be physically in-line but could send a control
signal over a data port or wireless link to instruct the radio. Early coordination suggests this
is feasible; some modern tactical radios have APl endpoints for frequency agility or at least
can accept an external GPS-timing or frequency control input. By demonstrating this, ARC
Nano could be positioned not just as a standalone gadget but as a software/firmware
upgrade to existing comm systems - vastly easing adoption (no need to replace all
radios, just augment them). Even without that, our current approach of having the ARC
Nano device connected (for example via the radio’s audio interface or tactical radio
Ethernet portin newer systems) is workable in the field. Because ARC Nano is small and
man-portable (size of a thick novel, a few pounds)[191][192], it can be carried alongside a
standard radio or even embedded into a radio backpack or vehicle mount. The low Size,
Weight, and Power (SWaP) footprint means it does not significantly burden the soldier -
especially if eventually integrated or co-located with existing comms gear[192][193]. For
vehicle or UAV deployments, the system can be mounted and powered by the platform’s
power, with possibly higher-spec components (like Jetson Orin NX for more processing if
needed, as discussed). The modular design allows for such scaling: e.g., a vehicle might

carry a more powerful ARC Nano node that links with multiple radios or sensors at once
(we dub this concept “ARC Teams” or “ARC Enterprise” for future expansion)[194][195].
But even in the basic form, integration with Army battle management networks is achieved
through common data standards, making ARC Nano a force multiplier that slots into
existing workflows rather than requiring a new ecosystem.

Auditability and Trust in Al: A key challenge for Al in military applications is gaining user
trust. ARC Nano tackles this by design through its audit logging and explainability
features. Every detection and action is recorded with a timestamp and contextual data,
and importantly, each automated decision comes with a rationale string as described
earlier[120][121]. These logs are hash-chained for integrity[196][197] — meaning if
someone tried to alter or remove a log entry (say to hide a mistake), it would be evident
because the chain of hashes would break. This provides confidence up the chain of
command that the data is authentic and complete. Commanders and EW officers can
review these logs after a mission (or even in near real-time at an operations center) to see
exactly what transpired: Did the Al correctly identify threats? Did it respond in line with
ROE? Were there any false alarms or missed detections? By providing this “evidence
pipeline”[196], ARC Nano’s developers have made it easier for evaluators to trust the
system’s claims because they are backed by data that can be audited[196][198]. In our
experience demonstrating the prototype to Army stakeholders, this audit trail was very
persuasive —instead of a “black box” Al, ARC Nano is more of a “glass box” where its inner
workings leave a trail of breadcrumbs to follow. This aligns well with DoD principles on Al
(e.g., being traceable and governable). During operations, the telemetry governance
aspect ensures that only relevant info is reported up, reducing noise. And if higher HQ
wants to dive deeper, the raw logs can be forwarded or inspected after the fact. This
approach could even feed into intelligence: for example, if ARC Nano units across a
theater all log unknown signals of a certain type, analysts could aggregate those logs to
discern a new enemy emitter technique, etc. The combination of real-time alerts with
after-action audit logs strikes a balance between autonomy and human oversight, which
is crucial in gaining user acceptance. Soldiers and commanders are more likely to adopt
ARC Nano if they feel they can understand and verify its behavior — and our design explicitly
facilitates that understanding (the ATAK alerts show what’s happening, and the logs
explain why).

Scalability and Multi-Domain Potential: While the current instantiation is a single node
aiding a single radio or squad, ARC Nano was envisioned as part of a larger family of
systems. The name “ARC” hints at Adaptive Radar Countermeasures, an Army program
paradigm; our ARC Nano is the edge piece. Future “ARC Teams” could involve multiple
ARC Nano nodes in a network sharing information[194][195]. For instance, if one squad’s
unit detects a new threat signal, it could send that info to nearby units so they preemptively
adjust or are on alert. We already have the network capability (since they all use CoT,
sharing is feasible if an appropriate server or peer-to-peer link is in place). We would need
to ensure the pub-sub bus and data formats are compatible across nodes, but since we
adhere to standard message formats, that seems achievable. On a larger scale, ARC
Enterprise could connect edge devices to centralized analysis hubs (perhaps at a brigade

or division level, or a cloud analytics cell)[194][199]. This could enable big-picture machine
learning on patterns of EW (like seeing trends in how adversaries jam across many
encounters, which might be used to update the models or tactics proactively). We foresee
ARC Nano as a building block that can be duplicated and networked. Each node is
inexpensive enough to procure many; since it’s based on COTS, scaling production is not
as onerous as bespoke mil-spec gear. In terms of deploying on vehicles or UAVs: our
hardware discussion showed that moving to an Orin NX (70-100 TOPS) or even an AGX Orin
(200+ TOPS) is straightforward if we have more power available[91][92]. A vehicle could
easily provide 50-100 W, which could allow multiple SDRs (for multiple channels or
antennas) and heavier models (maybe even real-time signal demodulation or signal
classification beyond recognition). We tested that the same code can run on those bigger
platforms thanks to NVIDIA’s unified JetPack environment[200]. Cooling and mounting for
vehicles and UAVs were considered in design: e.g., on a vehicle, one might slot the device
into a docking station that provides power and perhaps a larger fan or vehicle HVAC tie-
in[201][76]. On UAVs, weight is premium, but something the size of ARC Nano (a few
pounds) could potentially be carried by larger drones, or the compute could be integrated
into the drone’s payload systems. Airborne deployment introduces considerations like
altitude (cooling in thin air) and vibration, but again, our ruggedization covers much of that
(and flight might help cooling due to airflow)[202][203]. The fact that ARC Nano is small
and uses standard interfaces means it can be an add-on to many platforms with minimal
fuss. As the Army pushes toward multi-domain operations, having a distributed network of
smart EW sensors/actors like ARC Nano could feed into the multi-domain command and
control (MDC2) networks, ensuring the electromagnetic dimension is fully represented and
actively managed at the tactical edge.

Limitations and Further Development: While ARC Nano’s current capabilities are strong,
we acknowledge certain limitations and areas for improvement. One limitation is signal
classification beyond “known vs unknown.” Our OSR model tells you if something is
unknown, and if known it can identify the class (if it was among training classes). In the
field, it would be useful to also have a library of specific emitter classifications (like “this is
a Russian R-330Zh jammer” or “this is a Blue Force SINCGARS signal”). That requires
incorporating a comprehensive signal library and possibly more sophisticated
classification models (perhaps using techniques like cyclostationary feature analysis or
deep spectrum analysis). We focused on the open-set novelty detection as the hardest
part; adding or refining known classes is straightforward with our framework (just training
on more labeled data). We plan to expand the training library to cover more waveforms,
including frequency-hopping signals, low probability of intercept/detect (LPI/LPD) signals,
and emerging waveforms the adversary might use[204][205]. Another limitation is that our
current prototype deals primarily with single-channel jamming and single-link
protection. In a real scenario, a unit might have multiple radios (for redundancy or
different nets) and could face broad-spectrum jamming affecting many channels at once.
Extending ARC Nano to coordinate across multiple links (maybe hopping multiple radios in
sync) or to handle wideband barrage jammers (perhaps by directing a radio to use an
entirely different band, like switching from VHF to L-band if VHF is saturated) is a next step.

The contextual bandit approach can scale to more actions, but as the action space grows
(e.g., dozens of channels, multiple bands), we might consider hierarchical policies or
multi-agent learning for efficiency. Additionally, direction-finding (DF) and geolocation of
jammers is not directly addressed by ARC Nano (beyond detecting presence). If multiple
units detect the same unknown signal, one could potentially triangulate. That is outside
our current scope but is a logical integration with other EW assets (an ARC Nano detection
could cue a dedicated DF unit or drone to hone in on the source).

We must also consider counter-countermeasures: a savvy adversary might observe that
Blue comms are hopping and try to follow or adapt their jamming. ARC Nano’s bandit is
designed to handle some non-stationarity (it will re-learn if jammer behavior changes), but
there could be a cat-and-mouse dynamic. In future, more advanced algorithms like game-
theoretic planning or multi-armed bandits with adversarial assumptions might further
improve performance against adaptive jammers. We are exploring concepts like using a
randomized element in hopping (to not be too predictable) and possibly employing
deception techniques (e.g., deliberately transmitting decoy signals to confuse enemy
EW). These go beyond the current scope but show how an Al-based EW system opens new
possibilities.

Doctrine, Training, and Data: Introducing ARC Nano to units will also require adjustments
in doctrine and training. Since it automates tasks traditionally done by EW personnel,
soldiers will need to learn to trust and effectively use it. We envision that ARC Nano could
also serve as a training aid. Because it logs everything and can record spectrum data,
units could replay scenarios after an exercise to see how the EW fight unfolded[206][207].
This can inform tactics, techniques, and procedures (TTPs): for example, learning that the
enemy tends to jam right after detecting our comms might lead to TTP of shorter
transmissions or trigger discipline, etc., and ARC Nano’s data would provide evidence for
that. In essence, each deployment of ARC Nano creates valuable EW telemetry that can
be aggregated to improve overall understanding of the EM domain in operations[208].
Commanders can incorporate ARC Nano status reports into their battle update briefs (“EW
status: jamming detected in sector, auto-mitigated by ARC Nano, comms stable”). Over
time, this normalizes proactive EW defense as part of standard ops.

Alignment with Modernization Priorities: It is worth noting that ARC Nano’s capabilities
align closely with stated Army modernization priorities in EW. The Army has called for real-
time spectrum situational awareness, Al/ML-enabled threat detection, and resilient
communications networks[209][210]. ARC Nano hits all of these: it senses and shares
spectrum data in real time, uses Al to flag new threats, and provides an automated comms
protection mechanism. Furthermore, the trend is to push capability to the edge — small
units operating dispersed but still needing connectivity and awareness. ARC Nano is
exactly an edge solution: inexpensive, small, leveraging COTS, and could be deployed
widely (imagine every platoon having one in their standard kit)[193][211]. This stands in
contrast to legacy EW systems that are large, centralized, and scarce. By democratizing
EW capability down to lower echelons, the Army can achieve a more distributed and robust
posture in the EM spectrum. It also complicates the adversary’s task: instead of having a

few big EW targets to jam or avoid, they face many smart nodes that can collectively
respond to interference. In many ways, ARC Nano embodies a philosophy of “edge
computing / edge EW” in line with broader trends in the Internet of Things and edge Al,
applied to the military domain[212].

Ethical and Safe Use: Finally, a brief note on ensuring ARC Nano’s use remains ethical
and safe. Since it can autonomously transmit or retune, we built in safeguards (ROE
constraints, human overrides via Ul) to keep a human in the loop as appropriate. For
instance, if an operator disagrees with an action, they can override or set the systemto a
passive mode. In practice, we expect most of the time the system will operate
autonomously, but having the ability to intervene or shut it off is critical for user confidence
and for avoiding unintended consequences. The audit logs also serve to verify compliance
with rules (if an incident were to occur, one can examine logs to see if the system did
something it shouldn’t have, which so far in testing it has not). As ARC Nano or similar
systems become more prevalent, likely policy will evolve for their use —analogous to how
the introduction of autopilots or fire-and-forget missiles required doctrinal adjustments.
We have baked in as much transparency and control as we can to facilitate that process.

In conclusion of this discussion, ARC Nano appears to be a highly promising capability
for tactical units, offering solutions to pressing EW challenges. It brings an Al-centric
approach to spectrum security that can outpace adversaries and greatly empower soldiers
at the edge. The results suggest that even a small device can have an outsized impact on
survivability and effectiveness in the electromagnetic domain. The next steps involve
transitioning this prototype to real-world use — a process we have already begun with live
demos and engagement with Army program offices. We address that in the conclusion
along with a summary of our contributions.

Conclusion

This paper presented ARC Nano, an edge Al electronic warfare system developed to
provide open-set signal detection, adaptive jamming mitigation, and auditable
spectrum security for tactical military units. From a comprehensive R&D effort
encompassing algorithm design, system architecture, hardware/software integration, and
rigorous testing, ARC Nano has emerged as a persuasive solution for enhancing
frontline EW capabilities.

In research and development, we focused on Al/ML innovations: a neural network-based
open-set recognition model that identifies new or unexpected RF signals with high
confidence, and a contextual bandit decision engine that dynamically protects
communications by selecting optimal countermeasures in milliseconds. We described the
training methodologies (including synthetic data generation and conformal calibration for
the detector, and online reinforcement learning for the bandit) and demonstrated that
these models meet stringent performance targets (®90% detection of unknowns at ~0 false
alarms, sub-second reaction times)[103][2]. The system architecture was detailed,
showing a modular microservice approach on a COTS hardware platform (NVIDIA Jetson

Orin Nano + SDR). We provided full hardware specifications, noting that the Jetson Orin
Nano delivers ~40 TOPS in a 7-15 W envelope[43] and the chosen SDR (Ettus B205mini or
LimeSDR Mini) covers the necessary frequency range (70 MHz-6 GHz or 10 MHz-3.5 GHz)
with low power draw[56][213]. Thermal and form-factor considerations were addressed
through a passive+active cooling design and a rugged enclosure, yielding a device roughly
the size of a portable radio that can be battery-operated in the field[85][214].

Through extensive testing, we validated that ARC Nano’s Al-driven approach yields
game-changing results. In simulations, the system achieved essentially zero false
alarms while detecting novel signals that conventional systems would miss[107][108].
When facing heavy jamming, ARC Nano’s adaptive hopping kept communication links alive
>99% of the time, versus ~50% without it, and shortened link outages to fractions of a
second[4][181]. These improvements - tripling link availability and boosting throughput by
~50% under attack — directly translate to operational advantage, ensuring command and
controlis maintained under electronic fire. The performance graphs and tables (Figure 2,
Table 2) underscored these benefits quantitatively. Such resilience, achieved by an
autonomous agent, is unprecedented in a package this small.

Equally important, ARC Nano was built with trust and integration in mind. Every
autonomous decision is logged in a tamper-evident audit trail[196][27], and standard
telemetry (CoT messages) ensures the system’s outputs can be readily consumed by
existing tactical software like ATAK[28][30]. We demonstrated that the system operates
within strict bandwidth limits (<0.2 Mbps) and adheres to ROE/policy constraints at all
times[36][174]. This governance framework means commanders can trust the autonomy
—not only does it act fast and effectively, but it also acts transparently and under control.

The field deployment path for ARC Nano is clear and underway. We have containerized
the entire software stack for easy portability and conducted hardware-in-the-loop tests on
the Jetson+SDR platform, confirming that simulated gains carry over to real RF
environments[133][215]. A live demonstration plan has been outlined (and partially
executed), wherein ARC Nano is shown to preserve a radio link through an active jamming
attack, with live telemetry fed to an ATAK display[143][144]. Early results from these demos
are aligning with simulations, bolstering credibility. Transition to Programs of Record is
facilitated by ARC Nano’s use of COTS hardware and open standards — it can integrate
with current radios via software updates and requires minimal new training for soldiers
(since most of its action is autonomous and its interface is through familiar tools).

Looking forward, we envision scaling ARC Nano to networked formations and more
complex threat environments. Appendices outlined how the architecture can extend to
multi-node operations and how higher-performance Jetson modules or multi-channel
SDRs can be utilized for vehicle/UAV deployments. We also highlighted future work such
as expanding the signal library (to handle more types of emitters, including sophisticated
LPI/LPD waveforms)[204], refining user interfaces (e.g., an ATAK plugin for more direct
control or a simple on-device Ul)[216], and participating in large-scale exercises for
operational evaluation[217]. The ultimate goal is to transition ARC Nano from prototype to

a fielded, widely deployed capability within the next 1-2 years[218]. Given the modular
design, the same core technology could form the basis of an integrated EW ecosystem -
from soldier-carried units (ARC Nano) to team/vehicle systems (ARC Teams) to cloud-level
analysis (ARC Enterprise)[194].

In conclusion, ARC Nano represents a new paradigm for tactical electronic warfare: itis
edge-centric, Al-powered, and soldier-friendly. It empowers small units with capabilities
that previously required specialized equipment and personnel, essentially providing an
“EW wingman” that is always vigilant and reacts at machine speed to protect
communications and inform leaders[219][220]. The research and results presented show
that such a system is not only feasible but highly effective. As adversaries continue to
advance their EW tactics, tools like ARC Nano offer a proactive counter: an intelligent,
adaptable defense that continuously learns and improves. For military program evaluators
and stakeholders, ARC Nano offers a compelling combination of technical rigor,
demonstrated performance, and alignment with operational needs. By deploying ARC
Nano, the Army can significantly harden its tactical networks against EW threats and gain
valuable situational awareness of the electromagnetic domain — ultimately giving our
forces the edge in the battle for the spectrum.

Appendices follow, providing additional technical details and data in support of the ARC
Nano system.

Appendix A: Hardware Specifications

Table A1. ARC Nano Hardware Summary and Specifications

Component Key Specs & Features
Computing NVIDIA Jetson Orin Nano 8GB - 6-core ARM Cortex-A78AE CPU;
Module NVIDIA Ampere GPU with 1024 CUDA + 32 Tensor Cores (supports

FP16/INT8); Al Performance: up to 40 TOPS (dense) in 7-15 W power
envelope[43].
Memory: 8 GB LPDDR5;
 Size: 70 mm x 45
mm module; can be mounted on dev carrier (100x80 mm incl.
heatsink).
 Thermals: Configurable 7 W, 10 W, 15 W power
modes[46]. Passive heatsink; active fan recommended at 15 W (or
equivalent chassis cooling)[77].
 Interfaces: 1x M.2 Key E (for
WiFi/BT), 1x HDMI, 3x USB 3.2, 1x GbE, 4x CSl camera (not all used in
ARC Nano).
 OS: Linux (Ubuntu 20.04 LTS) with NVIDIA JetPack 5
(CUDA 11).
 Notable: No NVENC (HW video encoder) on Orin
Nano (unneeded for EW)[47]. JetPack guarantees long-term support.

Software Stack Containerization: All microservices in Docker containers (ARM64).

 Middleware: DDS (FastRTPS) pub-sub bus with Redis fallback.

 Al Frameworks: PyTorch (training), TensorRT (inference).

Languages: Python/C++ hybrid (Python for high-level logic & bandit,

Component

Key Specs & Features

SDR (Option 1)

SDR (Option 2)

Antenna(s)

Power Supply

C++ for SDR drivers and some DSP).
 Libraries: GNU Radio/UHD
or SoapySDR for radio I/0; NumPy, SciPy, scikit-learn for analysis;
OpenSSL for hashing logs.
 Telemetry: Cursor-on-Target (CoT)
JSON messages for events; ZMQ or REST API for metrics dashboard.

Ettus USRP B205mini-i — 1x1 SDR (one TX, one RX).
 Frequency:
70 MHz - 6 GHz[56].
 Bandwidth: up to 56 MHz
instantaneous[56].
 ADC / DAC: 12-bit (Max 61.44 MS/s)[57].

RF Front-end: Analog Devices AD9364 RFIC.
TX Power: +10 dBm
typical (varies by band)[57].
 Noise Figure: ~<8 dB (using AD9364
LNA)[57].
 Clock/PPM: 2.5 ppm (internal); support for external
GPSDO clock input.
 Interface: USB 3.0 SuperSpeed (5 Gbps);
bus-powered.
Power Draw: ~3 W (idle) up to ~5 W (max TX) via
USB[58].
 Size & Weight: ~83 x 51 mm board, 24 g[54].

Durability: Tested in lab environments; industrial temperature range
(~0-50°C). Typically used with enclosure for field.

LimeSDR Miniv2.0 - 1x1 SDR.
 Frequency: 10 MHz - 3.5 GHz[61]
(can extend up to ~6 GHz with tweaks, not guaranteed).

Bandwidth: ~30 MHz usable (up to 40 MHz in some modes)[64].

ADC / DAC: 12-bit (Max 30.72 MS/s)[221].
 RF Front-end: Lime
Microsystems LMS7002M MIMO transceiver.
 TX Power: ~0 dBm
up to +10 dBm (varies by freq)[222].
 Noise Figure: ~6-8 dB at
high gain (per community tests)[64].
 Interface: USB 3.0 (uses
Cypress/FTDI bridge); bus-powered.
 Power Draw: ~2.5W (500
mA @5V)[66].
 Size: 69 x 31 mm board (fits in palm)[66].

Notable: Open-source software ecosystem (LimeSuite). Needs
external clock ref for higher stability (option). For field, typically
placed in a small case for protection.

30-512 MHz Tactical Whip - Flexible whip or blade antenna, ~1 m
length (collapsed for carry). Covers typical VHF/UHF military comm
bands. ~2 dBi gain average (omni).
 500 MHz-6 GHz Wideband -
e.g. adiscone or sleeve dipole covering UHF to C-band. Possibly
modular (swappable short antennas for specific high bands: 2.4 GHz,
5.8 GHz, etc.). ~0 to +3 dBi gain.
 Options: Use existing radio
antenna via splitter to avoid extra antenna (at cost of sharing).
Directional antennas (handheld log-periodic ~600-6000 MHz) for DF
or extended range (not normally carried by individuals, more for
vehicles).

Dismounted: Rechargeable Li-ion battery (e.g., BB-2590 or
Conformal Wearable Battery). Consumption ~12 W mean, so
(assuming 15V average from pack) ~0.8 A draw. A 150 Wh battery
gives ~12 hours. Can hot-swap batteries if needed.
 Vehicle: 12V
or 24V DC input from vehicle power (clamped/regulated to 19V for

https://limemicro.com/sdr/limesdr-mini-2-0/#:~:text=LimeSDR%20Mini%202.0%20,MSPS%20%C2%B7%20TX%20Channels

Component Key Specs & Features

Jetson dev kit or 5 V for custom power routing). System draws ~1-2.5
A depending on voltage. Vehicles have ample power; also opportunity
to charge internal battery from vehicle.
 Connector: e.g. MIL-STD
circular power connector or USB-C PD (if using modern power
delivery). EMI filters on power input to avoid noise.

Enclosure & Enclosure: CNC milled aluminum case with gasket seal (IP54+). Size

Cooling target = 20 x 15 x 5 cm (example) —about a “thick novel”. Actual
prototype currently ~10 x 13 x 6 cm (dev kit + SDR in a temporary
case).
 Cooling: Passive via aluminum case (fins if needed) for
~10-12 W dissipation in normal climates. Active fan (40 mm, 5 CFM
mini-fan) mounted internally for high ambient (>30°C) or sustained 15
W operation[77][80]. Fan is temperature-controlled (on ~55°C, off
<45°C core temp, for example).
 Mounting: Shock-absorbing
brackets internally; external brackets for attaching to MOLLE gear or
vehicle rack. Quick-release mount option for vehicles (slide-in dock
providing power & external antenna connectors).

Environmental Temperature: 0°C to +40°C operational without performance loss
(tested)[223]. With fan, likely up to +50°C. Cold start tested to -10°C
(some degradation in battery in extreme cold; can mitigate by keeping
device warm or using arctic-rated batteries).
 Weather: Designed
to withstand rain (enclosure sealed; if fan present, use gore-tex vent
or special sealed fan). Not submersible currently, but could be with
passive cooling only.
 Vibration/Shock: MIL-STD-810G methods
applied in design (unit can survive 4-ft drop and standard vehicle
vibration). All connectors secured (threaded or locking).

Notes: The above specs reflect the prototype and near-term configuration. As technology
evolves, these can be upgraded (e.g., Jetson Orin NX 16GB module for ~6x Al performance
if needed, or future SDRs with wider bandwidth). The design philosophy is to use modular
COTS parts, so specific components can be swapped as long as they meet the interface
requirements. For example, one could integrate a different Al accelerator or a 2x2 MIMO
SDR for future versions with minimal redesign.

Appendix B: Audit Log Schema and Example

ARC Nano’s audit logging system produces a structured record for every significant event
(detections and actions). The logs are stored as JSON lines (one JSON object per log entry),
making them easy to parse and analyze. Each entry is cryptographically linked to the
previous entry via a hash, forming an immutable chain[196][27].

Schema Definition: The audit log JSON schema includes the following fields:

e timestamp (string): Time of the eventin ISO 8601 format (UTC, with ms precision).

e event_type (string): Type of event, e.g., "DETECTION" or "ACTION".

e details (object): Nested object containing event-specific data. For a detection, this
includes:

e freq_hz (number): Detected signal center frequency in Hz.
e snr_db (number): Estimated signal-to-noise ratio in dB.

e classification (string): Classified identity, e.g., "friendly", "hostile:jammer",
or "unknown" (for unrecognized signals).

e confidence (humber): Confidence score (or risk score for unknown) between 0-1.

e signal_id (string): If known, an identifier for the signal (e.g., a modulation or emitter
ID). "unknown" if not recognized.

e Foran action event, details includes:

e action (string): The action taken, e.g., "FREQ_HOP" or "POWER_ADJUST".

e from_channel (string/number): Previous channel or setting (if applicable).

e to_channel (string/number): New channel or setting applied.

e jammer_type (string): Type of jammer or interference detected (if identified, e.g.,
"sweeping" or "barrage").

e justification (string): Textual explanation of why the action was taken[119][120].

e result (string): Outcome of the event if applicable (e.g., for an action, "success"
once executed, or for detection, perhaps "mitigated" if an action followed).

e prev_hash (string): SHA-256 hash of the previous log entry (hex-encoded).

e curr_hash (string): SHA-256 hash of the current entry’s content (excluding the
hashes)[196].

The combination of prev_hash and curr_hash forms the hash chain: the very first entry
uses a fixed prev_hash (like a genesis value), and each subsequent entry’s prev_hash
equals the curr_hash of the prior entry. This way, any alteration of a past entry would break
the chain.

Example Log Entries: Below is a simplified example illustrating a detection followed by a
countermeasure action. (For readability, line breaks and indentation are added; actual
logs are one line per JSON object.)

{

"timestamp": "2025-09-22T16:00:05.1237",

"event type": "DETECTION",

"details": {
"freq_hz": 300000000,
"snr_db": 15.2,
"classification": "unknown",
"confidence": 0.95,
"signal id": "unknown"

}s

"result": "alerted",

"prev_hash": "000

000",
"curr_hash": "e3alf5...abcd1234" // (truncated for example)

}
{
"timestamp": "2025-09-22T16:00:05.219Z",
"event_type": "ACTION",
"details": {
"action": "FREQ_HOP",
"from_channel”: 30.000,
"to_channel®: 30.075,
"jammer_type": "sweeping",
"justification": "Detected sweeping jammer on 30.000 MHz; hopped to avoid
interference.”
}s
"result": "success",
"prev_hash": "e3alf5...abcd1234",
"curr_hash": "7b4c9d...ef567890"
}

In this example, the first entry logs that at 16:00:05.123Z, a signal at 300 MHz was
detected, classified as unknown with high confidence. The system likely sent an alert
(hence result “alerted”). The prev_hash is all zeros because it’s the first entry (genesis).
The second entry at 16:00:05.219Z shows an action: the system hopped frequency from
30.000 MHz to 30.075 MHz because it identified a sweeping jammer. The justification field
explains the reasoning in plain language. The prev_hash of the second entry matches the
curr_hash of the first, linking them. The chain continues like this for all subsequent events.

These logs would typically be stored locally (e.g., on the Jetson’s storage) and can be
periodically backed up or transmitted (if bandwidth allows, perhaps only summary orin
case of certain triggers). Because they are in JSON, they can be ingested by log analysis
tools or simply opened in a text editor for review. We also considered a binary logging
format for efficiency, but JSON was chosen for transparency and ease of use in the
prototyping phase.

In practice, an audit log review tool could be provided (maybe as part of an ATAK plugin or
a web dashboard) to display these in a user-friendly way, highlight important events, and
verify the hash chain integrity. For instance, an officer after a mission could see a timeline:
“(10:05) Unknown signal detected at 300 MHz; (10:05) System hopped radio from ChA to
ChB; (10:07) Jammer ceased; (10:07) System remained on ChB,” etc., with the ability to
drill down into details if needed.

The audit log schema and examples above demonstrate how ARC Nano prioritizes
accountability. Every decision the Al makes is documented, enabling trust through
verification. This level of detail in logs is somewhat unique in EW systems, where black-box
EW suites often give minimalinsight. We believe this approach is necessary not just for
technical verification but to satisfy leadership, legal, and ethical oversight for autonomous
systems in the field.

Appendix C: Test Case Summaries

This appendix summarizes the key test cases used to evaluate ARC Nano, including both
simulation scenarios and planned real-world demonstrations. Each test case is described
with its purpose, setup, and outcomes (referencing results where applicable).

Simulation Test Cases:

1.

Basic Unknown Signal Detection (3-min scenario): Purpose: Validate open-set
detector in a simple environment.
 Setup: Friendly transmitter sends periodic
known signals (mix of FM and PSK). At T+60s, an unknown signal (not in training set,
e.g., a chirp) transmits for 5 seconds. SNRs ~20 dB. No jamming present.

Expectations: ARC Nano should flag the unknown signal during its transmission
with high confidence, and not misclassify any friendly signals as unknown.

Outcome: Achieved 100% detection of the chirp (each of 3 runs) with 0 false alerts.
Friendly signals consistently classified correctly. Logs showed “DETECTION
unknown” events during the chirp, and CoT alert was issued.

Closed-Set vs Open-Set Classification Challenge: Purpose: Ensure OSR
outperforms a conventional classifier on novel signals.
 Setup: A variety of
modulated signals (AM, 4FSK, QPSK) including one modulation not in training (e.g.,
MSK). One emitter switches through these mods.
 Expectations: Traditional
closed-set model would mislabel MSK as something else, whereas ARC Nano’s
OSR should label MSK as unknown.
 Qutcome: As expected, closed-set
baseline misclassified MSK 90% of the time (often as FSK), whereas ARC Nano
labeled MSK as unknown >95% of time, with risk score ~0.9. No false unknowns on
the known mods.

Single-Jammer Communication Disruption (3-min jam): Purpose: Measure EP
effectiveness for a short jammer encounter.
 Setup: Friendly link (source to sink
sending data at 0.5 Mbps) on fixed Channel A. At T+30s, a jammer begins jamming
Channel A (narrowband, +20 dBm JNR) for 60 seconds then stops. Two runs: one
with ARC Nano off, one with ARC Nano on (allowed to hop to Channel B).

Metrics: Link availability, throughput, recovery time.
 Outcome: Without ARC,
link dropped ~2s after jammer start and remained down until jammer stopped
(availability ~48%, throughput ~0.25 Mbps due to initial period) — essentially no
commes during jam. With ARC, link hopped ~0.3s after jam start, regained
throughput >80% nominal within 1s. Availability 99%, throughput ~0.47 Mbps.
Recovery time ~0.8s (including detection latency). Matched values in Results Table
2 for 180s scenario[224][181].

Dual-Jammer Stress (10-min, high unknown density): Purpose: Torture-test both
ES and EP components together.
 Setup: Two enemy jammers (one sweeping
across a band, one fixed-tone) alternate activation every 60s over 10 minutes,
overlapping for some periods. Background: multiple friendly signals and 30%
unknown signals (various untrained waveforms) appear randomly. Friendly comm

5.

link under protection tries to send continuous traffic. ARC Nano fully on (detect +
protect). This was repeated 4 times with different random seeds.
 Metrics:
Unknown detection TPR/FPR, link metrics, network overhead.
 Outcome:
Unknown TPR ~90.2%, 0 false/day FPR as reported[151][152]. Link availability
baseline ~46%, with ARC ~99.97%([225][226]; throughput baseline ~0.29 vs 0.45
Mbps with ARC[225][227]; avg recovery 0.2s. Telemetry bandwidth ~101.7 kbps
peak[36][37]. These align with Table 1 and 2 in main text. All log chains verified
intact; no policy violations (logs confirmed hops stayed in allowed channels).

Telemetry Flood Test: Purpose: Ensure telemetry shaping works under extreme
event rates.
 Setup: Artificially generate a worst-case: 10 unknown signals per
second (beyond realistic), each causing an alert, plus EP actions every second.
Bandwidth budget 200 kbps.
 Expectation: System should throttle or queue
messages to not exceed 200 kbps. No crash due to overload.
 Qutcome:
Network usage peaked ~180 kbps, never crossed budget[36]. Some less critical
messages were dropped (per design) when queue filled, but essential alerts got
through. System remained stable. This shows margin in telemetry design.

Hardware (HIL) Test Cases:

1.

Hardware Functional Test (Bench, Quiet): Purpose: Verify end-to-end operation
on real hardware.
 Setup: Jetson Orin Nano dev kit + B205mini SDR. Antenna in
shielded room with no significant signals. Run ARC Nano containers.
 Steps:
Transmit a known test signal from a signal generator (friendly signal profile) at low
level. Verify detection and correct classification on Jetson. Then introduce one
jammer recording playback to SDR, see that EP triggers a hop on a dummy radio (or
at least logs an action).
 Outcome: The Jetson pipeline ran ~10x faster than
real-time in quiet conditions (no backlog). Detected known signals fine (friendly
classification). When jammer playback started, EP-Lite issued a hop command
within ~50 ms (observed via log timestamps). We measured ~70 ms from detection
to action output, meeting our sub-100 ms goal. The dummy radio (emulated)
switched channel as commanded. This established basic functionality.

Latency & Throughput Characterization (HIL): Purpose: Measure detection and
hop latencies and analog performance on hardware.
 Setup: Use signal
generator to produce a bursty unknown signal at various SNRs and measure
detection delay (time from signal on-air to CoT alert). Also measure time from
jamming onset to radio hop (with two SDRs: one as jammer, one as radio).
Additionally, feed a continuous data stream to quantify throughput.
 Outcome:
Detection latency ~20 ms at high SNR (30 dB), ~40-50 ms at lower SNR (~10 dB) —
mainly constrained by our detection window length (which is adjustable). Hop
decision latency ~50 ms after detection, plus radio tuning time ~10 ms, total ~60 ms
typical. End-to-end restore times were ~100-150 ms, slightly better than sim
because hardware tuning was fast. Throughput on a real link (using two SDRs as

Tx/Rx) went from 0 to near-full and back to 0 as expected; with ARC Nano, only a
brief dip. These support the sim results and give confidence in timing.

3. Thermal Run (0°C & 40°C): Purpose: Ensure system maintains performance at
temperature extremes and doesn’t overheat or throttle.
 Setup: Place device in
environmental chamber. At 0°C: cold start it, run a standard scenario. At 40°C: run a
15 W high-load scenario for 30+ minutes. Monitor CPU/GPU clocks and throttling
indicators.
 Qutcome: At 0°C, no issues; system started and ran (Jetson module
warmed itself during operation). At 40°C ambient, after ~20 min continuous high
load, the Jetson did not throttle (peak GPU temp ~75°C, which is high but within
limits). The internal fan kicked on at 60°C as designed and stabilized the
temperature. Performance metrics at 40°C run were unchanged from room temp,
indicating the cooling solution is adequate for that range. We’ll test beyond 50°C
with a fan in future if needed.

Planned Field Demo Cases:

1. Live Jammer Field Demo: Purpose: Demonstrate ARC Nano in an operationally
relevant setting to stakeholders.
 Setup: Two tactical radios (e.g. PRC-148s or
similar or SDR-based emulators) set up ~500 m apart to simulate a platoon net. One
radio at HQ, one with a “squad”. ARC Nano connected to squad’s radio. A jammer
(e.g. an EW training system or another SDR) positioned to jam the squad’s radio
frequency when triggered. Use standard voice or data over the radios. Observers
have ATAK devices subscribed to ARC Nano’s CoT feed.
 Plan: Start with ARC
Nano off — demonstrate that when jammer activates, comms are lost (e.g., voice
call drops or data pings fail). Then enable ARC Nano —when jammer activates again,
show that within a second the comms resume (squad radio frequency hops, voice
call continues). Also show on ATAK that a “jammer detected/hop executed” alert
popped up with time and location (if location known). Possibly repeat with different
jams (e.g., different frequencies).
 Success Criteria: Radio link stays
operational during jamming with ARC Nano on. ATAK correctly displays alerts. No
unintended behaviors (e.g., ARC Nano doesn’t hop when not needed, etc.).

Status: In preparation. Early partial tests using a low-power jammer and close range
have been successful, matching lab results (link maintained). Full demo pending
range scheduling.

2. Multi-Node Network Test (Future): Purpose: See how multiple ARC Nanos might
cooperate or interfere.
 Setup: Three squads each with ARC Nano on different
but overlapping nets. Introduce jamming that affects two squads, etc. Possibly see
if one unit’s detection alert can cue others. This is more of a future experiment
beyond current integration, included for completeness of test planning.

Expectation: Each unit handles its own jam. If networked at CoT server, one’s
detection could be seen by others (though currently they don’t automatically react
to others’ detections unless jamming also locally sensed). Could explore design of
collaborative hopping (future feature).

These test cases collectively ensured that ARC Nano was evaluated across a spectrum of
conditions — from ideal to worst-case — and that it meets its design requirements. The
simulation tests established baseline performance and allowed fine-tuning in a controlled
way, while the HIL and field tests bridge to real-world operation, uncovering any practical
issues (none significant so far). By documenting and summarizing them here, we provide
evidence for the claims made in the main body of the paper and a reference for others
aiming to replicate or build upon this work.

(112] (31141 (5] (6] [7118]1 [e1 [10] [M1] [12] [13] [14] [15] [16][17][18] [19] [20] [21] [22] [23]
[24] [25] [26][27][28] [29] [30] [31] [32] [34] [35] [36] [37] [38] [39] [40] [41] [42] [53] [84] [97]
[98][99][100][101][102][103][104][105] [106] [107] [108][109][110][111][112][113]
[114][115][116] [117]1[118][119][120][121][122] [123] [124] [125] [126] [127] [128] [129]
[130][131][132] [133][134][135][136][137][138][139] [140] [141][142] [143] [144] [145]
[146][147][148][149][150][151][152] [153] [154] [155] [156] [157] [158] [159] [160] [161]
[162][163][164] [165][166][167]1[168][169][170][171][172] [173][174] [175] [176][177]
[178][179][180] [181][182][183][184][185][186][187] [188] [189] [190] [191][192] [193]
[194][195] [196] [197][198][199] [204] [205] [206] [207] [208] [209] [210] [211] [212] [215]
[216] [217] [218] [219] [220] [224] [225] [226] [227] [33] [43] [44] [45] [46] [47] [48] [49] [50]
[51][52] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73][74][75][761([77][78] [79] [80] [81] [82] [83] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94]
[95] [96] [200] [201] [202] [203] [213] [214] [222] [223] [221]

—_— et el d —d
— et d d d

https://limemicro.com/sdr/limesdr-mini-2-0/#:~:text=LimeSDR%20Mini%202.0%20,MSPS%20%C2%B7%20TX%20Channels

